Math, asked by priyANUPshanchica, 1 year ago

If a =1-√2,Find the value of a-1/a^3

Answers

Answered by ARoy
159
a=1-√2
1/a=1/(1-√2)
or, 1/a=(1+√2)/(1-√2)(1+√2)
or, 1/a=(1+√2)/(1-2)
or, 1/a=-(1+√2)
∴, (a-1/a)³=[(1-√2)-{-(1+√2)}]³=(1-√2+1+√2)³=2³=8
Answered by hotelcalifornia
97

Answer:

The value of a-\frac {1}{a^3} is 8.

To find:  

The value of a-\frac {1}{a^3}

Solution:

Given:

\begin{array} { l } { \mathrm { a } = 1 - \sqrt { 2 } } \\\\ { \frac { 1 } { a } = \frac { 1 } { 1 - \sqrt { 2 } } } \end{array}

\begin{array} { c } { = \frac { 1 } { 1 - \sqrt { 2 } } \times \frac { ( 1 + \sqrt { 2 } ) } { 1 + \sqrt { 2 } } } \\\\ { = \frac { ( 1 + \sqrt { 2 } ) } { 1 ^ { 2 } - \sqrt { 2 } ^ { 2 } } } \end{array}

\begin{aligned} & = \frac { ( 1 + \sqrt { 2 } ) } { 1 - 2 } \\\\ & = \frac { ( 1 + \sqrt { 2 } ) } { - 1 } \\\\ & = - ( 1 + \sqrt { 2 } ) \end{aligned}

\begin{array} { l } { \frac { 1 } { a } = - 1 - \sqrt { 2 } } \\\\ { a - \frac { 1 } { a ^ { 3 } } } \end{array}

\begin{aligned} = & ( 1 - \sqrt { 2 } - ( - 1 - \sqrt { 2 } ) ) ^ { 3 } \\\\ & = ( 1 - \sqrt { 2 } + 1 + \sqrt { 2 } ) ^ { 3 } \end{aligned}

=2^3

= 8

Therefore,

\mathrm { a } - \frac { 1 } { \mathrm { a } ^ { 3 } } = 8

Thus, the value of a - \frac { 1 } { a ^ { 3 } } is 8.

Similar questions