Math, asked by Aditya453, 1 year ago

If a=1-√2 find value of a+1/a and a^2+1/a^2

Answers

Answered by Panzer786
7
Hiiii friend,


A = 1-✓2


Therefore,


1/A = 1/1-✓2

Rationalizing the denominator 1-✓2


=> 1/A = 1/1-✓2 × 1+✓2/1+✓2 = (1+✓2)/(1-✓2)(1+✓2)


=> 1/A = (1-✓2)/(1)² - (✓2)² = (1-✓2)/1-2 = (1+✓2)/-1 = (1+✓2)



Therefore,

(A+1/A) = (1-✓2)(1+✓2) = 2


=> (A+1/A)² = (2)² = 4


=> (A²+1/A²) + 2 × A × 1/A = 4


=> (A²+1/A²) +2 = 4


=> (A²+1/A²) = 4-2


=> (A²+1/A²) = 2




HOPE IT WILL HELP YOU...... :-)
Answered by Robin0071
3
Solution:-

given by:-

a = 1 -  \sqrt{2}  \\ a +  \frac{1}{a}  \\ 1 -  \sqrt{2}  +  \frac{1}{1 -  \sqrt{2} }  \\  \frac{  1 + 2- 2 \sqrt{2}  + 1}{1 -  \sqrt{2} }  \\  \frac{4 - 2 \sqrt{2} }{1 -  \sqrt{2} }  \times  \frac{1 +  \sqrt{2} }{1 +  \sqrt{2} }  \\  \frac{4 - 2 \sqrt{2}  + 4 \sqrt{2} - 4 }{1 - 2}  \\(  - 2 \sqrt{2}   )ans \\ now \:  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\ 3  -  2 \sqrt{2}  +  \frac{1}{3 -  2\sqrt{2} }  \\  \frac{9 + 8 - 12 \sqrt{2}  + 1}{3 - 2 \sqrt{2} }  \\  \frac{18 - 12 \sqrt{2} }{3 - 2 \sqrt{2} }  \times  \frac{3  +  2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \frac{54 - 36 \sqrt{2} + 36 \sqrt{2}  - 24 \sqrt{2}  }{9 - 8}  \\ (54 - 24 \sqrt{2} )ans
Similar questions