Math, asked by ajmalanzar2002, 7 months ago

If A= [1 3 -2 4] show that A^2-5A+10I=0​

Answers

Answered by inbisatpervez
1

Step-by-step explanation:

[1 3 -2 4]×[1 3 -2 4]=A^2

[1×1 3×3 -2×-2 4×4]=A^2

[1 9 4 16]=A^2

-5A=[-5 -15 10 -20]

10I=[1 0 0 0]×10

10I=[10 0 0 0]

A^2-5A+10I=[1 9 4 16] +[-5 -15 10 -20]+[10 0 0 0]

A^2-5A+10I=0

Answered by brokendreams
0

Proved the expression A^2-5A+10I=0

Step-by-step explanation:

Given: Matrix A = \left[\begin{array}{cc}1&3\\-2&4\end{array}\right]

To Prove: A^2-5A+10I=0

Solution:

  • Poof of A² - 5A + 10I = 0

\Rightarrow A^2 = AA = \left[\begin{array}{cc}1&3\\-2&4\end{array}\right]\left[\begin{array}{cc}1&3\\-2&4\end{array}\right]

\Rightarrow A^2 = \left[\begin{array}{cc}1-6&3+12\\-2-8&-6+16\end{array}\right]

\Rightarrow A^2 = \left[\begin{array}{cc}-5&15\\-10&10\end{array}\right] \ \cdots \cdots (1)

and, \Rightarrow 5A = \left[\begin{array}{cc}5&15\\-10&20\end{array}\right] \ \cdots \cdots (2)

To prove A^2-5A+10I=0, we have,

\Rightarrow \left[\begin{array}{cc}-5&15\\-10&10\end{array}\right] - \left[\begin{array}{cc}5&15\\-10&20\end{array}\right] +10  \left[\begin{array}{cc}1&0\\0&1\end{array}\right] =0

\Rightarrow \left[\begin{array}{cc}-10&0\\0&-10\end{array}\right] + \left[\begin{array}{cc}10&0\\0&10\end{array}\right] =0

\Rightarrow \left[\begin{array}{cc}0&0\\0&0\end{array}\right] =0

Hence, proved the expression A^2-5A+10I=0

Similar questions