Math, asked by Sajantiwari13, 1 month ago

If A(1,3) ,B(-1,2),C(x,4) and D(2,5) are vertices of parallelogram then write the value of x​

Answers

Answered by MaheswariS
10

\textbf{Given:}

\textsf{Vertices of a parallelogram are}

\mathsf{A(1,3),\;B(-1,2),\;C(x,4)\;and\;D(2,5)}

\textbf{To find:}

\textsf{The value of x}

\textbf{Solution:}

\textsf{We know that,}

\boxed{\textsf{Diagonals of parallelogram are bisect each other}}

\implies\textsf{Mid point of diagonal AC=Mid point of diagonal BD}

\implies\mathsf{\left(\dfrac{1+x}{2},\dfrac{3+4}{2}\right)=\left(\dfrac{-1+2}{2},\dfrac{2+5}{2}\right)}

\implies\mathsf{\left(\dfrac{1+x}{2},\dfrac{7}{2}\right)=\left(\dfrac{1}{2},\dfrac{7}{2}\right)}

\implies\mathsf{\dfrac{1+x}{2}=\dfrac{1}{2}}

\implies\mathsf{1+x=1}

\implies\mathsf{x=1-1}

\implies\boxed{\mathsf{x=0}}

\textbf{Find more:}

Show that thepoints A (0, 0), B(3, 0),C(4, 1) and D(1, 1) form a parallelogram​

https://brainly.in/question/22269492

Similar questions