Math, asked by parameswargiri2212, 1 year ago

If a^1/3+b^1/3+c^1/3=0,then prove that a+b+c=3a^1/3b^1/3c^1/3

Answers

Answered by Anonymous
7

Given :

a^{1/3}+b^{1/3}+c^{1/3}=0

\implies a^{1/3}+b^{1/3}=-c^{1/3} .......................(1)

Cubing both sides :

\implies (a^{1/3}+b^{1/3})^3=(-c^{1/3})^3

Use formula : (a+b)^3=a^3+b^3+3ab(a+b)

\implies a+b+3a^{1/3}b^{1/3}(a^{1/3}+b^{1/3})=-c

\implies a+b+3a^{1/3}b^{1/3}(-c^{1/3})=-c   [ From (1) ]

\implies a+b+c-3a^{1/3}b^{1/3}c^{1/3}=0

\implies a+b+c=3a^{1/3}b^{1/3}c^{1/3} [P.R.O.V.E.D]

Hope it helps

____________________________________________________________________

Similar questions