Math, asked by rajshaw4048, 1 month ago

if a-1 = 3 find a ²+1


Attachments:

Answers

Answered by PritishKantiDatta
0

Please mark me as brainliest and hope it helps

Attachments:
Answered by anindyaadhikari13
21

\textsf{\large{\underline{Solution}:}}

Given that:

\rm:\longmapsto a +  \dfrac{1}{a} = 7

Squaring both sides, we get:

\rm:\longmapsto\bigg(a+\dfrac{1}{a}\bigg)^{2}={7}^{2}

Using identity (a + b)² = a² + 2ab + b², we get:

\rm:\longmapsto {a}^{2} +\dfrac{1}{ {a}^{2} } + 2\cdot a\cdot \dfrac{1}{a} =49

\rm:\longmapsto {a}^{2} +\dfrac{1}{ {a}^{2} } + 2=49

Subtracting 2 from both sides, we get:

\rm:\longmapsto {a}^{2} +\dfrac{1}{ {a}^{2} }=49 -2

\rm:\longmapsto {a}^{2} +\dfrac{1}{ {a}^{2} }=47

So, the value of a² + 1/a² is 47.

\textsf{\large{\underline{Answer}:}}

  • a² + 1/a² = 47.

\textsf{\large{\underline{More Identities To Know}:}}

  1. (a - b)² = a² - 2ab + b²
  2. a² - b² = (a + b)(a - b)
  3. (a + b)³ = a³ + 3ab(a + b) + b³
  4. (a - b)³ = a³ - 3ab(a - b) - b³
  5. a³ + b³ = (a + b)(a² - ab + b²)
  6. a³ - b³ = (a - b)(a² + ab + b²)
Similar questions
Math, 9 months ago