Math, asked by niharikakambojknl, 24 days ago

if a=1-√5 find a^2-1\a^2​

Answers

Answered by rishu6845
3

Step-by-step explanation:

a = 1 -  \sqrt{5}  \\  \frac{1}{a}  =  \dfrac{1}{1  - \sqrt{5} }  \\  =  \dfrac{1}{1 -  \sqrt{5} }  \\  =  \dfrac{1(1 +  \sqrt{5}) }{(1 -  \sqrt{5})(1 +  \sqrt{5})  }  \\  =  \dfrac{1 +  \sqrt{5} }{ {(1)}^{2}  -  {( \sqrt{5}) }^{2} }  \\  =  \dfrac{1 +  \sqrt{5} }{1 - 5 }  \\    =  \dfrac{1 +  \sqrt{5} }{ - 4}

 {a}^{2}  -  {( \dfrac{1}{a}) }^{2}  \\  =  {(1  -   \sqrt{5} )}^{2}  -  {( \frac{1 +  \sqrt{5} }{ - 4} )}^{2}  \\  =  {(1)}^{2}  +  {( \sqrt{5}) }^{2}  - 2 \sqrt{5}  -  {( \frac{ {(1)}^{2} +  { (\sqrt{5} )}^{2} + 2 \sqrt{5}   }{16} )} \\  = 1 + 5 - 2 \sqrt{5}  -  \dfrac{1 + 5 + 2 \sqrt{5} }{16}  \\  = 6 - 2 \sqrt{5}  -  \frac{6 + 2 \sqrt{5} }{16}  \\  =  \dfrac{96 - 32 \sqrt{5}  - 6 - 2 \sqrt{5} }{16}  \\  =  \dfrac{90 - 32 \sqrt{5} }{16}  \\  =  \dfrac{2(45 - 16 \sqrt{5} )}{16}  \\   = \dfrac{45 - 16 \sqrt{5} }{16}

Answered by varadad25
1

Answer:

a² - ( 1 / a² ) = ( 45 - 17 √5 ) / 8

Step-by-step-explanation:

We have given that,

a = 1 - √5

We have to find the value of a² - ( 1 / a² ).

Now,

1 / a = 1 / ( 1 - √5 )

By multiplying and dividing RHS by ( 1 + √5 ),

1 / a = [ 1 / ( 1 - √5 ) ] * ( 1 + √5 ) / ( 1 + √5 )

⇒ 1 / a = ( 1 + √5 ) / ( 1 - √5 ) ( 1 + √5 )

We know that,

( a + b ) ( a - b ) = a² - b²

⇒ 1 / a = ( 1 + √5 ) / [ ( 1 )² - ( √5 )² ]

⇒ 1 / a = ( 1 + √5 ) / ( 1 - 5 )

⇒ 1 / a = ( 1 + √5 ) / ( - 4 )

⇒ 1 / a = - ( 1 + √5 ) / 4

1 / a = ( - 1 - √5 ) / 4

Now, we know that,

a² - b² = ( a + b ) ( a - b )

∴ a² - ( 1 / a² ) = [ a + ( 1 / a ) ] [ a - ( 1 / a ) ]

⇒ a² - ( 1 / a² ) = [ 1 - √5 + ( - 1 - √5 ) / 4 ] [ 1 - √5 - ( - 1 - √5 ) / 4 ]

⇒ a² - ( 1 / a² ) = { [ 4 ( 1 - √5 ) + ( - 1 - √5 ) ] / 4 } { [ 4 ( 1 - √5 ) - ( - 1 - √5 ) ] / 4 }

⇒ a² - ( 1 / a² ) = [ ( 4 - 4 √5 - 1 - √5 ) / 4 ] [ 4 - 4 √5 + 1 + √5 ) / 4 ]

⇒ a² - ( 1 / a² ) = [ ( 3 - 5 √5 ) / 4 ] [ ( 5 - 3 √5 ) / 4 ]

⇒ a² - ( 1 / a² ) = ( 3 - 5 √5 ) ( 5 - 3 √5 ) / ( 4 * 4 )

⇒ a² - ( 1 / a² ) = [ 3 ( 5 - 3 √5 ) - 5 √5 ( 5 - 3 √5 ) / 16

⇒ a² - ( 1 / a² ) = ( 15 - 9 √5 - 25 √5 + 15 * 5 ) / 16

⇒ a² - ( 1 / a² ) = ( 15 - 9 √5 - 25 √5 + 75 ) / 16

⇒ a² - ( 1 / a² ) = ( 15 + 75 - 9 √5 - 25 √5 ) / 16

⇒ a² - ( 1 / a² ) = ( 90 - 34 √5 ) / 16

⇒ a² - ( 1 / a² ) = 2 ( 45 - 17 √5 ) / 16

a² - ( 1 / a² ) = ( 45 - 17 √5 ) / 8

Similar questions