if a=1-√5 find a^2-1\a^2
Answers
Step-by-step explanation:
Answer:
a² - ( 1 / a² ) = ( 45 - 17 √5 ) / 8
Step-by-step-explanation:
We have given that,
a = 1 - √5
We have to find the value of a² - ( 1 / a² ).
Now,
1 / a = 1 / ( 1 - √5 )
By multiplying and dividing RHS by ( 1 + √5 ),
1 / a = [ 1 / ( 1 - √5 ) ] * ( 1 + √5 ) / ( 1 + √5 )
⇒ 1 / a = ( 1 + √5 ) / ( 1 - √5 ) ( 1 + √5 )
We know that,
( a + b ) ( a - b ) = a² - b²
⇒ 1 / a = ( 1 + √5 ) / [ ( 1 )² - ( √5 )² ]
⇒ 1 / a = ( 1 + √5 ) / ( 1 - 5 )
⇒ 1 / a = ( 1 + √5 ) / ( - 4 )
⇒ 1 / a = - ( 1 + √5 ) / 4
⇒ 1 / a = ( - 1 - √5 ) / 4
Now, we know that,
a² - b² = ( a + b ) ( a - b )
∴ a² - ( 1 / a² ) = [ a + ( 1 / a ) ] [ a - ( 1 / a ) ]
⇒ a² - ( 1 / a² ) = [ 1 - √5 + ( - 1 - √5 ) / 4 ] [ 1 - √5 - ( - 1 - √5 ) / 4 ]
⇒ a² - ( 1 / a² ) = { [ 4 ( 1 - √5 ) + ( - 1 - √5 ) ] / 4 } { [ 4 ( 1 - √5 ) - ( - 1 - √5 ) ] / 4 }
⇒ a² - ( 1 / a² ) = [ ( 4 - 4 √5 - 1 - √5 ) / 4 ] [ 4 - 4 √5 + 1 + √5 ) / 4 ]
⇒ a² - ( 1 / a² ) = [ ( 3 - 5 √5 ) / 4 ] [ ( 5 - 3 √5 ) / 4 ]
⇒ a² - ( 1 / a² ) = ( 3 - 5 √5 ) ( 5 - 3 √5 ) / ( 4 * 4 )
⇒ a² - ( 1 / a² ) = [ 3 ( 5 - 3 √5 ) - 5 √5 ( 5 - 3 √5 ) / 16
⇒ a² - ( 1 / a² ) = ( 15 - 9 √5 - 25 √5 + 15 * 5 ) / 16
⇒ a² - ( 1 / a² ) = ( 15 - 9 √5 - 25 √5 + 75 ) / 16
⇒ a² - ( 1 / a² ) = ( 15 + 75 - 9 √5 - 25 √5 ) / 16
⇒ a² - ( 1 / a² ) = ( 90 - 34 √5 ) / 16
⇒ a² - ( 1 / a² ) = 2 ( 45 - 17 √5 ) / 16
⇒ a² - ( 1 / a² ) = ( 45 - 17 √5 ) / 8