Math, asked by hackernew4200, 1 month ago

if a=1- √5 , find the value of a² - 1/a²​

Answers

Answered by payalchatterje
14

Answer:

Value of  {a}^{2}  -  \frac{1}{ {a}^{2} }

is \frac{45 - 17 \sqrt{5} }{8}

Step-by-step explanation:

Given,a = 1 -  \sqrt{5}

Here we want to find value of  {a}^{2}  -  \frac{1}{ {a}^{2} }

Now,

 {a}^{2}  =  {(1 -  \sqrt{5}) }^{2}  \\  =  {1}^{2}  - 2.1. \sqrt{5}  +  { \sqrt{5} }^{2}  \\  = 1 - 2 \sqrt{5}  + 5 \\  = 6 - 2 \sqrt{5}

and

 \frac{1}{ {a}^{2} }  =  \frac{1}{6 - 2 \sqrt{5} }  \\  =  \frac{(6 + 2 \sqrt{5} )}{(6 - 2 \sqrt{5} )((6  + 2 \sqrt{5} )}  \\  =  \frac{(6  + 2 \sqrt{5} )}{ {6}^{2} -  {(2 \sqrt{5} )}^{2}  }  \\  =  \frac{(6  +  2 \sqrt{5} )}{36 - 20}  \\  =  \frac{2(3 +  \sqrt{5} )}{16}  \\  =  \frac{3 +  \sqrt{5} }{8}

Now,

 {a}^{2}  -  \frac{1}{ {a}^{2} }  \\  = 6 - 2 \sqrt{5}  -  \frac{3 +  \sqrt{5} }{8}  \\  =  \frac{48 - 16 \sqrt{5}  - 3 -  \sqrt{5} }{8}  \\  =  \frac{45 - 17 \sqrt{5} }{8}

Here applied formula,

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

This is a problem of Algebra.

Some important Algebra formulas are

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1)https://brainly.in/question/13024124

2)https://brainly.in/question/1169549

Answered by yashbiswas985
1

Answer:

These is the correct answer of these question.

Step-by-step explanation:

Hope it's help you

Mark me as a brainliest answer.

Attachments:
Similar questions