Math, asked by parap7002, 2 months ago

If a 1.5cm tall girl stants at a distance of 3m, from a lamp - post and castes a shadow of 4.5m on the ground, then the height of lamp post is (A) 1.5m (B) 2m (c) 2.5m (D) 2.8m.​

Answers

Answered by SachinGupta01
7

 \bf \underline{ Let} :

 \sf \implies AB \:  be \:  the \:  lamp \:  post.

 \sf \implies CD \:  be \:  the \:  girl.

 \sf \implies DE  \: be \:  the \:  shadow.

 \sf \implies AD  \: be \:  the \:  distance \:  of  \: girl  \: from \:  the  \: lamp \:  post.

 \bf \underline{Thus} ,

 \sf \implies AB   =  \: ?

 \sf \implies CD = 1.5 \:  metre

 \sf \implies DE  = 4.5 \:  metre

 \sf \implies AD = 3  \: metre

 \bf \underline{So} ,

 \sf \implies \triangle \:  ABE  \: and  \: \triangle  \: CDE  \: are \:  similar.

 \sf \implies They  \: form \:  a \:  same \:  shape \: [Triangle].

 \bf \underline{Now} ,

 \implies \sf \: \dfrac{DE}{AD + DE} = \dfrac{CD}{AB}

 \sf \underline{Substitute \:  the  \: values} ,

 \implies \sf \: \dfrac{4.5}{3 + 4.5} = \dfrac{1.5}{h}

 \implies \sf \: \dfrac{4.5}{7.5} = \dfrac{1.5}{h}

 \implies \sf \: \dfrac{45}{75} = \dfrac{15}{10h}

 \implies \sf \: \dfrac{ {}^{3} \:  {\!\!\!\not4\!\!\!\not5}}{75} = \dfrac{{}^{1} \:  {\!\!\!\not1\!\!\!\not5}}{10h}

 \implies \sf \: \dfrac{3}{75} = \dfrac{1}{10h}

 \implies \sf \: 30h = 75

 \implies \sf \: h =  \dfrac{75}{30}

 \implies \sf \: h = 2.5 \: metre

 \underline{ \boxed{ \pink{ \sf Hence, height  \: of \:  the \:  lamp  \: post \:  is \:  2.5  \: metre. }}}

Attachments:
Similar questions