Math, asked by shivabupathi7786, 11 months ago

if a=1-√7÷1+√7 and b =1+√7÷1-√7 then find the value of a^2+ab+b^2

Answers

Answered by amankumaraman11
0

{ \boxed{ \boxed{a =  \frac{1 -  \sqrt{7} }{1 +  \sqrt{7} } }}} \\ { \boxed{ \boxed{b =  \frac{1 +  \sqrt{7} }{1 -  \sqrt{7} } }}}

Now, Rationalising a & b, we get,

a =  \frac{ {(1 -  \sqrt{7} )}^{2} }{(1 -  \sqrt{7} )(1 +  \sqrt{7} )}  =  \frac{1 + 7 - 2 \sqrt{7} }{1 - 7}  \\ \\   \:  \:  \: =  \frac{8 - 2 \sqrt{7} }{ - 6}  =  { \red{ \frac{2 \sqrt{7}  - 8}{6} }}

b =  \frac{ {(1 +  \sqrt{7} )}^{2} }{(1 +  \sqrt{7} )(1 -  \sqrt{7} )}  =  \frac{1 + 7 + 2 \sqrt{7} }{1 - 7}  \\  \\   \:  \:  \: =  \frac{8 + 2 \sqrt{7} }{ - 6}  =  { \red{\frac{ - 8 - 2 \sqrt{7} }{6} }}

Now,

 {a}^{2}  +  {b}^{2}  + ab =  {(a + b)}^{2}  - ab \\  \\  =  >  ( \frac{ - 8 - 2 \sqrt{7} }{6}  +  \frac{ - 8 +  2\sqrt{7} }{6} )^{2}  - (\frac{ - 8 - 2 \sqrt{7} }{6})(\frac{ - 8 +  2\sqrt{7} }{6}) \\  \\  =  >  ( \frac{ - 8 - 2 \sqrt{7}  - 8 + 2 \sqrt{7} }{6} )^{2}  - ( \frac{ {( - 8)}^{2} -  {(2 \sqrt{7} )}^{2}  }{36} ) \\  \\  =  >  {( \frac{ - 16}{6} )}^{2}  - ( \frac{64 - 28}{36} ) \\  \\  =  >  \frac{256}{36}  -  \frac{36}{36}  \\  \\  =  >  \frac{256 - 36}{36}  =  \frac{220}{36}

Hence,

{ \boxed{ \huge { \red{{a}^{2}  +  {b}^{2}  + ab =  \frac{220}{36} }}}}

Similar questions