If a =1-√7/1+√7 and b = 1+√7/1-√7 then find the value of a2+ab+b2/a2-ab+b2
Answers
Answered by
1
Answer:
Let(a2+b2−3ab)/a2+ab+b2=d/e
Given a= √8- √7
b=1/a = √8 +√7
Apply Componendo and dividendo
2a2+2b2−2ab)/−4ab=d+e/d−e
2(a2+b2−1)/−4=d+e/d−e
-(16+14–1)/2 = d+e/d-e
-29/2 = d+e/d-e
Again apply Componendo and dividendo
27/31= 2d/2e
d/e = 27/31
So,a2+b2−3ab/a2+ab+b2=27/31
Similar questions