Math, asked by sonam1712, 9 months ago

If a=1/7+4√3&b=1/7-4√3 find a²+b²​

Attachments:

Answers

Answered by Anonymous
5

Solution:-

Given

 \rm \: a =  \dfrac{1}{7 + 4 \sqrt{3} }  \: and \: \:  b \:  =  \dfrac{1}{7 - 4 \sqrt{3} }

To find

 \rm \: a {}^{2}  +  {b}^{2}

Now to the value of a and b

 \bigg( \dfrac{1}{7 + 4 \sqrt{3} }  \bigg) {}^{2}  +  \bigg( \dfrac{1}{7 - 4 \sqrt{3} }  \bigg) {}^{2}

 \dfrac{1}{( 7 + 4 \sqrt{3} ) {}^{2} }  +  \dfrac{1}{(7 - 4 \sqrt{3} ) {}^{2} }

Using this identity

 \rm(a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 \rm( {a}^{}  -  {b}^{} ) {}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

we get

 \rm \dfrac{1}{ {7}^{2} + (4 \sqrt{3} ) {}^{2}   + 2 \times 7 \times 4 \sqrt{3}  }  +  \dfrac{1}{ {7}^{2}  + (4  \sqrt{3}) {}^{2}   - 2 \times 7 \times 4 \sqrt{3}  }

 \dfrac{1}{49 + 48 + 56 \sqrt{3} }  +  \dfrac{1}{49 + 48  -  56 \sqrt{3} }

 \dfrac{1}{97 + 56 \sqrt{3} }  +  \dfrac{1}{97 - 56 \sqrt{3} }

Taking lcm

 \dfrac{97 - 56 \sqrt{3} + 97 + 56 \sqrt{3}  }{(97 + 56 \sqrt{3} )(97  -  56 \sqrt{3} )}

 \dfrac{97 -  \cancel{56 \sqrt{3} }+ 97 +  \cancel{56 \sqrt{3} } }{(97 {}^{2}   - ( 56 \sqrt{3} ){}^{2}  )}

 \dfrac{194}{9409 - 9408}

 \dfrac{194}{1}

Answer:- 194

Similar questions