Math, asked by pari76160, 2 months ago

If a =1/7-4√3 and b=1/7+4√3, find the value of :-
(a) a(square) +b(square)​

Answers

Answered by borate71
1

Answer:

ⒶⓃⓈⓌⒺⓇ ༉✪❥ :

  \huge \fcolorbox{navy}{black}{ \bf194}

Step-by-step explanation:

❖ Given :

 \bf \pink{ a =  \frac{1}{7 - 4 \sqrt{3} }  \: and \: b =  \frac{1}{7 + 4 \sqrt{3} } }

❖ To Find :

  \bold{ \blue{{a}^{2}  +  {b}^{2} }}

Solution:

Let's first rationalise a and b separately,

 \bf \: a =  \frac{1}{7 - 4 \sqrt{3} }  \times  \frac{7 + 4 \sqrt{3} }{7 + 4 \sqrt{3} }

 \bf =  \frac{7 + 4 \sqrt{3} }{(7 - 4 \sqrt{3})(7 + 4 \sqrt{3}  )}

For denominator, using the identity:

 \boxed{ \bold \red{ (x + y)(x - y) =  {x}^{2}  -  {y}^{2} }}

 =  \frac{7 + 4 \sqrt{3} }{ {7}^{2} -  {(4 \sqrt{3} )}^{2}  }

 =  \frac{7 + 4 \sqrt{3} }{49 - 48}

 \bf \purple{a = }  \bold  \purple{7 + 4 \sqrt{3} }

Similarly,

 \bf \purple{b = 7 - 4 \sqrt{3} }

Now, we know an identity,

 \boxed{ \bf(x + y)^{2}  =  {x}^{2} +  {y}^{2}  + 2xy }

Therefore,

 \boxed{ \bf \orange{ {x}^{2} +  {y}^{2}  = (x + y) ^{2} - 2xy  }}

Here,

☞ x = a = 7+4√3 and y = b = 7-4√3

Substituting values in the above equation,, we get,

 \bf {a}^{2}  +  {b}^{2}  = (7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3} )^{2}  - 2(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3} )

 =  ({14})^{2}  - 2(1) \\  = 196 - 2 \\  = 194

Here, we got our answer!

Thanks!

Answered by yashawinisingh
4

Answer:

Derive the equation of motion v = u +at, graphically.

answer is in picture

Attachments:
Similar questions