Math, asked by rashmimatwaya315, 12 days ago

If a+1/a = 1/(√3)-1, then the value of a²+1/a² is -
a. 3
b. -1/√3/2
c. 2√3
d.4√3​

Attachments:

Answers

Answered by juanRicardo
6

c. 2√3

a² + 1/a² = 7 Ans.

a2−1a2=(a+1a)(a−1a)=5(a+1a) a−1a=5 ⟹a2+1a2−2=25 ⟹a2+1a2−2+4=25+4 ⟹a2+1a2+2=29 ⟹a+1a=29−−√ ∴a2−1a2=529−−√ .

Answered by Hansika4871
21

Given:

The value ofa + \frac{1}{a} = \frac{1}{\sqrt{3}-1 }.

To Find:

The value ofa^2 + \frac{1}{a^2}.

Solution:

1. It is given that the value ofa + \frac{1}{a} = \frac{1}{\sqrt{3}-1 }.

=> a + \frac{1}{a} = \frac{1}{\sqrt{3}-1 }

Consider RHS of the above equation, It can also be written as follows,

=>\frac{1}{\sqrt{3}-1 },

=>\frac{\sqrt{3}+1 }{(\sqrt{3}-1)*\sqrt{3}+1  }   (Multiplying the numerator and denominator with\sqrt{3}+1.

=>\frac{\sqrt{3}+1 }{2}. ( Rationalisation)

2. Now the valuea+\frac{1}{a} becomes\frac{\sqrt{3} +1}{2},

=> Apply square on both sides, we get

=>(a+\frac{1}{a}) ^2 = (\frac{\sqrt{3}+1 }{2} )^2,

=>a^2 + \frac{1}{a^2} +2 = \frac{3+1+2\sqrt{3} }{4},

=>a^2 + \frac{1}{a^2} = 1+\frac{\sqrt{3} }{2}-2,

=>a^2+\frac{1}{a^2}= -1+\frac{\sqrt{3} }{2}.

Therefore, The value ofa^2+\frac{1}{a^2} is-1 +\frac{\sqrt{3} }{2}. Option B is the correct option.

Similar questions
Math, 12 days ago