Math, asked by sashiavpss4, 5 hours ago

if a+1/a=1/root3-1 then the value of a²+1/a² is​

Answers

Answered by MaheswariS
8

\underline{\textbf{Given:}}

\mathsf{a+\dfrac{1}{a}=\dfrac{1}{\sqrt{3}-1}}

\underline{\textbf{To find:}}

\textsf{The value of}\;\mathsf{a^2+\dfrac{1}{a^2}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{a+\dfrac{1}{a}=\dfrac{1}{\sqrt{3}-1}{\times}\dfrac{\sqrt{3}+1}{\sqrt{3}+1}}

\mathsf{a+\dfrac{1}{a}=\dfrac{\sqrt{3}+1}{3-1}}

\mathsf{a+\dfrac{1}{a}=\dfrac{\sqrt{3}+1}{2}}

\textsf{Squaring on bothsides, we get}

\mathsf{\left(a+\dfrac{1}{a}\right)^2=\dfrac{(\sqrt{3}+1)^2}{4}}

\implies\mathsf{a^2+\dfrac{1}{a^2}+2(a)\left(\dfrac{1}{a}\right)=\dfrac{3+1+2\sqrt3}{4}}

\implies\mathsf{a^2+\dfrac{1}{a^2}+2=\dfrac{4+2\sqrt3}{4}}

\implies\mathsf{a^2+\dfrac{1}{a^2}=\dfrac{4+2\sqrt3}{4}-2}

\implies\mathsf{a^2+\dfrac{1}{a^2}=\dfrac{4+2\sqrt3-8}{4}}

\implies\mathsf{a^2+\dfrac{1}{a^2}=\dfrac{2\sqrt3-4}{4}}

\implies\mathsf{a^2+\dfrac{1}{a^2}=\dfrac{2(\sqrt3-2)}{4}}

\therefore\boxed{\mathsf{a^2+\dfrac{1}{a^2}=\dfrac{\sqrt3-2}{2}}}

Answered by Anonymous
0

sorry can't wait to another

Similar questions