Math, asked by dhruvikaverma2007, 4 months ago

if a+1/a=17/4 find (a-1/a) plz tell ​

Answers

Answered by vivekanandrai138
0

Step-by-step explanation:

let

a+1/a =17/5

a-1/a. =

  \sqrt{17 \div 5}  )  { }^{2}  - 4

 \sqrt{289}  \div 25 - 4

 \sqrt{289 - 100}  \div 25

 \sqrt{189 \div 25}  \: answer

Answered by mathdude500
1

❥︎Question :-

\bf \:a + \dfrac{1}{a}  = \dfrac{17}{4} \:  then \: find \: a - \dfrac{1}{a}

\bf \:\large \red{AηsωeR } ✍

❥︎Given :-

\bf \:a + \dfrac{1}{a}  = \dfrac{17}{4}

❥︎To Find :-

\bf \:a - \dfrac{1}{a}

❥︎Identity used :-

\bf \: {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy

❥︎Solution :-

\bf \:a + \dfrac{1}{a}  = \dfrac{17}{4}

Using Identity,

\bf \: {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy

\bf \:  ⟼ Put \: x = a \: and \: y = \dfrac{1}{a}  \: we \: get

\bf \:  ⟼ {(a + \dfrac{1}{a} )}^{2}  -  {(a - \dfrac{1}{a} )}^{2}  = 4 \times a \times \dfrac{1}{a}

\bf \:  ⟼  {(\dfrac{17}{4} )}^{2}  -  {(a - \dfrac{1}{a}) }^{2}  = 4

\bf \:  ⟼ \dfrac{289}{4}  - {(a - \dfrac{1}{a}) }^{2} = 4

\bf \:  ⟼ {(a - \dfrac{1}{a}) }^{2} = \dfrac{289}{16}  - 4

\bf \:  ⟼ {(a - \dfrac{1}{a}) }^{2} = \dfrac{289 - 64}{16}

\bf \:  ⟼ {(a - \dfrac{1}{a}) }^{2} = \dfrac{225}{16}

\bf \:  ⟼ a - \dfrac{1}{a}  = \dfrac{15}{4}

__________________________________________

\large \red{\bf \:  ⟼ Explore \:  more } ✍

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)

Similar questions