Math, asked by anshikaguleria, 1 year ago

If a+1/a =17/4 find the value of (a-1/a)

Answers

Answered by Needthat
7

let \: a \:  = x \\  \\ x +  \frac{1}{x}  =  \frac{17}{4}  \\  \\ sobs \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 =  \frac{289}{16}  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \frac{257}{16}  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 =  \frac{225}{16}  \\  \\ (x -  \frac{1}{x} ) {}^{2}  =  {( \frac{15}{4} )}^{2}  \\  \\ x -  \frac{1}{x}  =  \frac{15}{4}  \\  \\ a -  \frac{1}{a}  =  \frac{15}{4}

hope it helps

Answered by hariram6122
0

Answer:

9root5/4

Step-by-step explanation:

a+1/a=17/4

(a+1/a)2=(17/4)2

a2+1/a2+2=289/16

a2+1/a2=289/16-2

(a-1/a)2=a2+1/a2-2

(a-1/a)2=289/16-2-2

(a-1/a)2=289/16-4

(a-1/a)2=225/16

a-1/a=9root5/4

Similar questions