Math, asked by akshitakumar0606, 9 months ago

If a + 1/a = 17/4, find the value of (a- 1/a)

Answers

Answered by chennailins
0

Answer:

Your Answer is:

Step-by-step explanation:

\frac{a^{2} + 1 }{a} = \frac{17}{4}\\   Therefore,\\a^{2} + 1 = \frac{17 a}{4}\\

Further we get;

a^2 - 17a/4 +1 = 0

By splitting the middle terms

Answered by Angie432
2

Answer:

+/- \frac{15}{4}

Step-by-step explanation:

a + \frac{1}{a} = \frac{17}{4} \\\\To find\\

(a- \frac{1}{a})\\

(a + \frac{1}{a} )^{2} = a^{2}  +\frac{1}{a^{2} } + 2

\frac{17}{4}^{2} =\frac{289}{16} = a^{2}  +\frac{1}{a^{2} } + 2a^{2}  + \frac{1}{a^{2} } = \frac{257}{16}

(a-\frac{1}{a} )^{2} =  a^{2} +\frac{1}{a^{2} } - 2(a-\frac{1}{a} )^{2} = \frac{257}{16} - 2

(a-\frac{1}{a} )^{2} = \frac{225}{16}

a-\frac{1}{a} = √\frac{225}{16}

⇒+/- \frac{15}{4}

Similar questions