Math, asked by deepabhojgaria, 4 months ago

If a+1/a= 17/4 find the value of (a-1/a)​

Answers

Answered by ashwanikumarp3
0

=-17/4

explanation:

a+1/a=17/4

=-17/4

hope it's correct

Answered by Anonymous
1

GIVEN :-

  \\  \bullet    \sf \: a +  \dfrac{1}{a} =  \dfrac{17}{4}   \\  \\

TO FIND :-

 \\  \bullet    \sf \: a -  \dfrac{1}{a} \\  \\

TO KNOW :-

 \\  \boxed{ \sf \:  {(x + y)}^{2}  =  {x}^{2} +  {y}^{2} + 2xy  } \\  \\  \boxed{ \sf \:(x -  {y)}^{2}   =  {x}^{2}  +  {y}^{2}  - 2xy} \\  \\

SOLUTION :-

 \\

We have ,

 \\  \sf \: a +  \dfrac{1}{a}  =  \dfrac{17}{4}  \\

Squaring both sides , we get...

 \\  \sf \ { \left(a +  \dfrac{1}{a}  \right)}^{2}  =  { \left(  \dfrac{17}{4} \right)}^{2}  \\

We know , (x+y)² = x² + y² + 2xy

Here ,

  • x = a
  • y = 1/a

Putting values , we get..

 \\   \implies\sf \:  {a}^{2}  +   { \left(  \dfrac{1}{a} \right)}^{2}  + 2(a) \left(  \dfrac{1}{a} \right)  =  \dfrac{289}{16} \\  \\  \\  \implies \sf \:  {a}^{2}  +  { \left(  \frac{1}{a} \right)}^{2}  + 2 =  \dfrac{289}{16}  \\  \\  \\ \implies \sf \:   {a}^{2}  +  \dfrac{1}{ { a }^{2} }  =  \dfrac{289}{16}  - 2   \:  \:  \:  \:  \:  \:  -  -  - (1) \\  \\

Now ,

 \\  \implies \sf \:  {\left( a -  \dfrac{1}{a} \right)}^{2}  \\

We know , (x-y)² = x² + y² - 2xy

Here ,

  • x = a
  • y = 1/a

Putting values we get..

 \\  \implies \sf \:  {\left( a -  \frac{1}{a} \right)}^{2} = {a}^{2}  +  \dfrac{1}{ {a}^{2} }  - 2(a) \left(  \dfrac{1}{a} \right) \\  \\   \\  \implies \sf \: {\left( a -  \frac{1}{a} \right)}^{2} = \left(  {a}^{2}  +  \dfrac{1}{ {a}^{2} } \right) - 2 \\  \\

From equation (1) , a² + 1/a² = 289/16 - 2

Putting values we get..

 \\  \implies \sf \: {\left( a -  \dfrac{1}{a} \right)}^{2} =  \dfrac{289}{16} - 2 - 2 \\  \\  \\  \implies \sf \:  {\left( a -  \dfrac{1}{a} \right)}^{2} = \dfrac{289}{16}   - 4 \\   \\ \\  \implies \sf \:  {\left( a -  \dfrac{1}{a} \right)}^{2} = \dfrac{289 - 4(16)}{16}  \\  \\  \\  \implies \sf \:{\left( a -  \dfrac{1}{a} \right)}^{2} =   \dfrac{289 - 64}{16}  \\  \\   \\  \implies \sf \: {\left( a -  \dfrac{1}{a} \right)}^{2} =  \dfrac{225}{16}  \\   \\   \\  \implies \sf \: a -  \dfrac{1}{a}  =  \sqrt{ \dfrac{225}{16} }  \\  \\  \\  \implies \underbrace{ \boxed{ \sf \: a -  \dfrac{1}{a}  =  \dfrac{15}{4} }} \\

Similar questions