Math, asked by Itzraisingstar, 10 months ago

If (a+1/a)^2=3 and a>0,prove that a^3+1/a^3=0.

No spams.

Answers

Answered by Anonymous
4

Answer:

<b><i><body bgcolor=67FGHJ><maquee direction="up"><font color=yellow></b></i>

a^3 +b^3 = a^2 - ab + b^2

(a^3+ 1/a^3) = ( a+ 1/a) ( a^2 -1 +1/a^2) (1) equation

it is given that

(a+1/a)^2 = 3

or

( a+ 1/a) = √3. (2) equation

Also

( a+ 1/a)^2 = 3

or - a^2 + 1/a^2 +2 =3

then ( transpose 2 to subtract 3)

a^2 + 1/a^2 = 3-2

a^2 + 1/a^2 = 1. (3) equation

putting 2 and 3 in 1 we have

a^3 +1/a^3 = √3 (1-1) = 0

so the answer is 0

hope it helps

thank you

<body bgcolor=red><marquee direction="down"><font color=BLUE>

Follow meee

Answered by Anonymous
0

Answer:

Answer:

</p><p></p><p>a^3 +b^3 = a^2 - ab + b^2</p><p></p><p>(a^3+ 1/a^3) = ( a+ 1/a) ( a^2 -1 +1/a^2) (1) equation</p><p></p><p>it is given that</p><p></p><p>(a+1/a)^2 = 3</p><p></p><p>or</p><p></p><p>( a+ 1/a) = √3. (2) equation</p><p></p><p>Also</p><p></p><p>( a+ 1/a)^2 = 3</p><p></p><p>o^2 + 1/a^2 = 3-2</p><p></p><p>a^2 + 1/a^2 = 1. (3) equation</p><p></p><p>putting 2 and 3 in 1 we have</p><p></p><p>a^3 +1/a^3 = √3 (1-1) = 0</p><p></p><p>so the answer is 0</p><p></p><p></p><p>Follow me ✌️</p><p>

Similar questions