If (a + 1 /a )^2 = 9, then find the value of a^3+ 1 /a^3
Answers
Answered by
7
EXPLANATION.
⇒ (a + 1/a)² = 9.
As we know that,
We can write equation as,
⇒ (a + 1/a) = √9.
⇒ (a + 1/a) = 3.
As we know that,
Formula of :
⇒ (x + y)³ = x³ + 3x²y + 3xy² + y³.
Using this formula in equation, we get.
⇒ (a + 1/a)³ = (a)³ + 3(a)²(1/a) + 3(a)(1/a)² + (1/a)³.
⇒ (a + 1/a)³ = a³ + 3a + 3/a + 1/a³.
⇒ (a + 1/a)³ = a³ + 3(a + 1/a) + 1/a³.
Put the values in the equation, we get.
⇒ (3)³ = a³ + 3(3) + 1/a³.
⇒ 27 = a³ + 1/a³ + 9.
⇒ 27 - 9 = a³ + 1/a³.
⇒ 18 = a³ + 1/a³.
⇒ a³ + 1/a³ = 18.
Answered by
1
Question
If (a + 1 /a )^2 = 9, then find the value of a^3+ 1 /a^3
To find
the value of a³+1/a³
Given
= (a+1/a)² = 9
= a+1/a = √9
= a+1/a = 3
= a³+1/a³ = ?
Now
= (a+1/a)³= 3³
a³+1/a² + 3 (3) = 27
a²+1a³ + 9 = 27
a³ + 1/a³ = 27 - 9
a³ + 1/a³ = 18
Similar questions