Math, asked by adityaram1802, 7 months ago

If (a+1/a)^2=9 then show that a^3+1/a^3=0

Answers

Answered by rohitkhajuria90
1

Step-by-step explanation:

 {( \frac{a + 1}{a}) }^{2}  = 9 \\  \frac{a + 1}{a}  = 3 \\ 3a = a + 1 \\ 2a = 1 \\ a =  \frac{1}{2}

 to \: prove  \\ \frac{ {a}^{3}  + 1}{ {a}^{3} }   = 0

\frac{a + 1}{a}  = 3 \\ cubing \: both \: sides \\  {( \frac{a + 1}{a}) }^{3}  = 27 \\  \frac{ {a}^{3} +  {1}^{3}  + 3a(a + 1) }{ {a}^{3} } = 27 \\  \frac{ {a}^{3} + 1 + 3 {a}^{2} ( \frac{a + 1}{a} ) }{ {a}^{3} }  = 27 \\ \frac{ {a}^{3} + 1 + 3 {a}^{2} ( 3) }{ {a}^{3} }  = 27 \\ \frac{ {a}^{3} + 1 + 9 {a}^{2}  }{ {a}^{3} }  = 27 \\  \frac{ {a}^{3}  + 1}{ {a}^{3} }  +  \frac{9 {a}^{2} }{ {a}^{3} }  = 27 \\ \frac{ {a}^{3}  + 1}{ {a}^{3} } = 27 -  \frac{9}{a}

Similar questions