Math, asked by sheryagrawal, 9 months ago

if a+1/a =2 then a ^100+1/a100


plzzzz solve​

Answers

Answered by RvChaudharY50
365

Solution :-

a + 1/a = 2

→ (a² + 1)/a = 2

→ a² + 1 = 2a

→ a² - 2a + 1 = 0

→ a² - a - a + 1 = 0

→ a(a - 1) - 1(a - 1) = 0

→ (a - 1)(a - 1) = 0

a = 1

Now,

a¹⁰⁰ + 1/a¹⁰⁰

→ 1¹⁰⁰ + 1/1¹⁰⁰

→ 1 + 1

2 (Ans.)

______________________

Shortcut :-

→ a + 1/a = 2

Put a = 1

→ 1 + 1/1

→ 1 + 1

→ 2 (Satisfy).

Therefore,

a¹⁰⁰ + 1/a¹⁰⁰

→ 1¹⁰⁰ + 1/1¹⁰⁰

→ 1 + 1

2 (Ans.)

______________________

Conclusion :-

  • if a + 1/a = 2 , Put a = 1
  • if a + 1/a = (-2) , put a = (-1)

_____________________________

Answered by Itsmysteriousangel
147
{ \rm{ \huge{QUESTION }}}




if a+1/a = 2 , then a^100 + 1/a^100 ???



{ \rm{ \huge{SOLUTION }}}




{ \blue{ \tt{a + \frac{1}{a} = 2}}}



{ \implies{ \blue{ \tt{ \frac{ {a}^{2} + 1 }{a} = 2}}}}



{ \implies{ \tt{ \blue{ {a}^{2} + 1 = 2a}}}}




{ \implies{ \blue{ \tt{ {a}^{2} - 2a + 1 = 0}}}}




{ \implies{ \blue{ \tt{ {a}^{2} - (a + a) + 1 = 0}}}}




{ \implies{ \blue{ \sf{ {a}^{2} - a - a + 1 = 0}}}}



{ \implies{ \blue{ \tt{a(a - 1) - 1(a - 1) = 0}}}}



{ \implies{ \blue{ \tt{(a - 1)(a - 1) = 0}}}}




{ \implies{ \red{ \boxed{ \boxed{ \blue{ \tt{ \: \: \: a = 1 \: \: }}}}}}}



Then,




{ \green{ \tt{ {a}^{100} + \frac{1}{ {a}^{100} } }}}




{ \red{ \rightarrow{ \green{ \tt{ {1}^{100} + \frac{1}{ {1}^{100}}}}}} }




{ \red{ \rightarrow{ \green{ \tt{1 + \frac{1}{1}}}}}}



{ \red{ \rightarrow{ \green{ \tt{1 + 1 = 2}}}}}



therefore,



{ \red{ \boxed{ \boxed{ \green{ \tt{ \: {a}^{100} + \frac{1}{ {a}^{100} } = 2 \: }}}}}}
Similar questions