Math, asked by manihanjra1, 5 months ago

if a-1/a=2find the value of a²+1/a²​

Answers

Answered by anindyaadhikari13
5

Required Answer:-

Given:

  • a - 1/a = 2

To find:

  • The value of a² + 1/a²

Solution:

Given that,

 \rm \implies a -  \dfrac{1}{a}  = 2

Squaring both sides,, we get,

 \rm \implies { \bigg(a -  \dfrac{1}{a} \bigg)}^{2}  = 2

 \rm \implies {a}^{2}  +  \dfrac{1}{ {a}^{2} }  - 2 \times a \times  \dfrac{1}{a}  =  {2}^{2}

 \rm \implies {a}^{2}  +  \dfrac{1}{ {a}^{2} }  - 2 = 4

 \rm \implies {a}^{2}  +  \dfrac{1}{ {a}^{2} }  =  4 + 2

 \rm \implies {a}^{2}  +  \dfrac{1}{ {a}^{2} }  =  6

Hence, the value of a² + 1/a² is 6.

Answer:

 \rm \implies {a}^{2}  +  \dfrac{1}{ {a}^{2} } = 6

Identity Used:

  • (a + b)² = a² + 2ab + b²

Other Identities:

  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)² = (a - b)² + 4ab
  • (a - b)² = (a + b)² - 4ab
Answered by BrainlyKingdom
3

\sf{a-\dfrac{1}{a}=2}

We are All Aware of Algebraic Identity : (a - b)² = a² + b² - 2ab

To Use This Identity in our Question, We need to Square on Both Sides

\to\sf{\left(a-\dfrac{1}{a}\right)^2=2^2}

Now, It's Time For Identify :D

\to\sf{\left(a^2+\dfrac{1^2}{a^2}-2\times a\times \dfrac{1}{a}\right)=2^2}

\to\sf{\left(a^2+\dfrac{1}{a^2}-2\right)=2^2}

\to\sf{a^2+\dfrac{1}{a^2}-2=4}

Adding 2 to Both Sides

\to\sf{a^2+\dfrac{1}{a^2}-2+2=4+2}

\to\sf{a^2+\dfrac{1}{a^2}=6}

Similar questions