If a-1÷a=3 find a^2+1÷a^2 and a^3-1÷a^3
Answers
hope this is helpful..
Answer:
The value of a² + ( 1 / a² ) is 11.
The value of a³ + ( 1 / a³ ) is 36.
Step-by-step-explanation:
We have given that,
a - ( 1 / a ) = 3
We have to find the value of
a² + ( 1 / a² ) and a³ - ( 1 / a³ ).
Now,
a - ( 1 / a ) = 3
By squaring both sides, we get,
[ a - ( 1 / a ) ]² = 3²
We know that,
( x - y )² = x² - 2xy + y²
⇒ a² + ( 1 / a² ) - 2 * a * 1 / a = 9
⇒ a² + ( 1 / a² ) - 2 = 9
⇒ a² + ( 1 / a² ) = 9 + 2
⇒ a² + ( 1 / a² ) = 11
∴ The value of a² + ( 1 / a² ) is 11.
─────────────────────
Now,
a + ( 1 / a ) = 3
By cubing both sides, we get,
[ a + ( 1 / a ) ]³ = 3³
We know that,
( x - y )³ = x³ - 3x²y + 3xy² - y³
⇒ a³ - 3 * a² * ( 1 / a ) + 3 * a * ( 1 / a )² - ( 1 / a )³ = 27
⇒ a³ - 3 * a + 3 * a * 1 / a² - ( 1 / a³ ) = 27
⇒ a³ - 3a + ( 3 / a ) - ( 1 / a³ ) = 27
⇒ a³ - ( 1 / a³ ) - 3 [ a - ( 1 / a ) ] = 27
⇒ a³ - ( 1 / a³ ) - 3 * 3 = 27
⇒ a³ - ( 1 / a³ ) - 9 = 27
⇒ a³ - ( 1 / a³ ) = 27 + 9
⇒ a³ - ( 1 / a³ ) = 36
∴ The value of a³ + ( 1 / a³ ) is 36.