If a+1/a=3,find the values of (a-1/a)^2.
Answers
Answered by
4
Answer:
(a + 1/a)² = 5
Note:
• (a+b)² = a² + 2ab + b²
• (a-b)² = a² - 2ab + b²
• (a + b)(a - b) = a² - b²
• (a + b)² = (a - b)² + 4ab
• (a - b)² = (a + b)² - 4ab
Solution:
- Given : a + 1/a = 3
- To Find : (a - 1/a)² = ?
We have ;
a + 1/a = 3
Now,
Squaring both sides , we get ;
=> (a + 1/a)² = 3²
=> a² + 2•a•(1/a) + (1/a)² = 9
=> a² + 2 + 1/a² = 9
=> a² + 1/a² = 9 - 2
=> a² + 1/a² = 7
Now,
=> (a - 1/a)² = a² - 2•a•(1/a) + (1/a)²
=> (a - 1/a)² = a² - 2 + 1/a²
=> (a - 1/a)² = (a² + 1/a²) - 2
=> (a - 1/a)² = 7 - 2 { a² + 1/a² = 7 }
=> (a - 1/a)² = 5
Hence ,
The required answer is 5 .
Using direct formula :
(a - b)² = (a + b)² - 4ab
=> (a - 1/a)² = (a + 1/a)² - 4•a•(1/a)
=> (a - 1/a)² = 3² - 4
=> (a - 1/a)² = 9 - 4
=> (a - 1/a)² = 5
Thus,
(a - 1/a)² = 5
Similar questions