Math, asked by birjesh3782, 2 months ago

if a+1/a=3 find value of a2+1/a2

Answers

Answered by Anonymous
19

Given

 \to \sf \left( a +  \dfrac{1}{a} \right) = 3

To find the value of

 \to \sf \left( a ^{2}  +  \dfrac{1}{a^{2} } \right)

Now Take

\to \sf \left( a +  \dfrac{1}{a} \right) = 3

Using Squaring on both side

\to \sf \left( a +  \dfrac{1}{a} \right) ^{2}  = (3) ^{2}

 \to \sf \left( a {}^{2}  +  \dfrac{1}{a {}^{2} } + 2 \times x \times  \dfrac{1}{x}  \right) = 9

\to \sf \left( a {}^{2}  +  \dfrac{1}{a {}^{2} } + 2\right) = 9

\to \sf \left( a {}^{2}  +  \dfrac{1}{a {}^{2} }\right) = 9 - 2

\to \sf \left( a {}^{2}  +  \dfrac{1}{a {}^{2} }\right) = 7

Answer

\to \sf \left( a {}^{2}  +  \dfrac{1}{a {}^{2} }\right) = 7

Answered by Mister360
2

Step-by-step explanation:

Given:-

\sf a+ \dfrac{1}{a}=3

To find:-

\sf a^2+\dfrac{1}{a^2}

Solution:-

 \rm \longmapsto a +  \frac{1}{a}  = 3 \\  \sf \: by \: taking \: square \\  \rm \longmapsto (a +  \frac{1}{a} ) {}^{2}  =  {3}^{2}  \\  \sf \: we \: know \: that \\  \boxed{ {(a + b)}^{2}  = a {}^{2} + 2ab +  {b}^{2}  } \\  \rm \longmapsto  {a}^{2}  + 2 \times a \times  \frac{1}{a}  +(  { \frac{1}{a}) }^{2}  = 9 \\  \rm \longmapsto  {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2 = 9 \\  \rm \longmapsto {a}^{2}  +  \frac{1}{ {a}^{2} }  = 9 - 2 \\ \rm \longmapsto {a}^{2}  +  \frac{1}{ {a}^{2} }   = 7

Similar questions