If a+1/a=√3 ,then a^17+(1/a)^17=?
Answers
Answered by
0
hope it is helpful...all the best
Attachments:
Answered by
0
Answer:
((√3 + i)/2)^17 + ((√3 - i)/2)^17
Step-by-step explanation:
(a + 1/a) = √3
squaring
a² + 1/a² +2a/a = 3
a² + 1/a² = 3-2
a² + 1/a² = 1
(a-1/a)² = a² + 1/a² - 2a/a
(a-1/a)² = 1 - 2
(a-1/a)² = -1
a - 1/a = +/- i ( i = iota)
case 1
a - 1/a = i
2a = √3 + i
a = (√3 + i)/2
2/a = √3 - i
1/a = (√3 - i)/2
a^17+(1/a)^17=((√3 + i)/2)^17 + ((√3 - i)/2)^17
Case 2
a - 1/a = - i
2a = √3 - i
a = (√3 - i)/2
1/2a = √3 + i
1/a = (√3 + i)/2
a^17+(1/a)^17=((√3 - i)/2)^17 + ((√3 + i)/2)^17
a^17+(1/a)^17= ((√3 + i)/2)^17 + ((√3 - i)/2)^17
Result is same as of case 1
so
a^17+(1/a)^17=((√3 + i)/2)^17 + ((√3 - i)/2)^17
amitnrw:
please mark brainliest if it helps
Similar questions