if a+1/a=34 then find the value of √a+1/√a
Answers
Answered by
0
Answer:
iven: a+\dfrac{1}{a}=34
To find: The value of \sqrt{a} +\dfrac{1}{\sqrt{a} }
Now as we know
(a+b)^2 = a^2+b^2+2ab
So we have
(\sqrt{a} +\dfrac{1}{\sqrt{a} })^2=(\sqrt{a} )^2+(\dfrac{1}{\sqrt{a} })^2+2\times\sqrt{a} \times \dfrac{1}{\sqrt{a} }\\\\\Rightarrow (\sqrt{a} +\dfrac{1}{\sqrt{a} })^2= a+\dfrac{1}{a} +2
substitution the value of a+\dfrac{1}{a}=34
we get
\\\\\Rightarrow (\sqrt{a} +\dfrac{1}{\sqrt{a} } )= 32+2\\\\\Rightarrow (\sqrt{a} +\dfrac{1}{\sqrt{a} } )=36\\\\\Rightarrow \sqrt{a} +\dfrac{1}{\sqrt{a} } =\sqrt{36} \\\\\Rightarrow \sqrt{a} +\dfrac{1}{\sqrt{a} } =6
Hence ,the value of \sqrt{a} +\dfrac{1}{\sqrt{a} } is 6
Answered by
1
Answer:
answer for the given problem is given
Attachments:
Similar questions