Math, asked by rudran, 11 months ago

If a-1/a=4, find the value of a³-1/a³

Answers

Answered by Siddharta7
12

If a-1/a = 4 .

then, [a -1/a]^3 = (4)^3

a^3 - 1/a^3 - 3a×1/a(a - 1/a) = 64

a^3 -1/a^3 -3(4) = 64. (putting the value of a -1/a).

a^3 -1/a^3 -12 =125

a^3 - 1/a^3 = 125 + 12 = 137.

Answered by chaudharyvikramc39sl
5

Answer:

If a-1/a=4, find the value of a³-1/a³ = 76

Step-by-step explanation:

Given :

Since we are given the expression

such that   a-\frac{1}{a}=4                                   ..................Equation(1)

To Find :

The value of

a^3-\frac{1}{a^3}

Solution :

Since we are given that expression

a-\frac{1}{a}=4

taking power 3 both sides of the given expression

(a-\frac{1}{a})^3=(4)^3

Since we know that  (x-y)^3=x^3-y^3-3xy(x-y)

according the inequality

a^3-(\frac{1}{a})^3-3(a)(\frac{1}{a})(a-\frac{1}{a})=64\\

a^3-\frac{1}{a^3}-3(4)=64                                   (substituting value of Equation(1))

a^3-\frac{1}{a^3}=64+12

a^3-\frac{1}{a^3}=76

Hence we have calculated the vale of

a^3-\frac{1}{a^3}=76

#SPJ3

   

Similar questions