Math, asked by mannsharma2312, 2 months ago

if a = 1/a-5, find a²- 1/a² please tell correctly​

Answers

Answered by assingh
26

Topic :-

Algebraic Identities

Given :-

\sf{a=\dfrac{1}{a}-5}

To Find :-

\sf {a^2-\dfrac{1}{a^2}}

Solution :-

We need to find,

\sf {a^2-\dfrac{1}{a^2}}

which can be written as,

\sf{\left(a+\dfrac{1}{a} \right)\left(a-\dfrac{1}{a} \right)}

\sf{(\because x^2-y^2=(x+y)(x-y))}

We are provided with,

\sf{a=\dfrac{1}{a}-5}

which can be written as,

\sf{a-\dfrac{1}{a}=-5}

So, we need to find,

\sf{\left(a+\dfrac{1}{a} \right)}

to answer the required question.

So,

\sf{a-\dfrac{1}{a}=-5}

Squaring both sides,

\sf{\left(a-\dfrac{1}{a}\right)^2=(-5)^2}

\sf{a^2-2(a)\left(\dfrac{1}{a}\right)+\left(\dfrac{1}{a}\right)^2=(-5)^2}

\sf {(\because (x-y)^2=x^2-2xy+y^2)}

\sf{a^2-2+\dfrac{1}{a^2}=25}

\sf{a^2+\dfrac{1}{a^2}=25+2}

\sf{a^2+\dfrac{1}{a^2}=27}

Now,

\sf{\left( a+\dfrac{1}{a}\right)^2=a^2+2(a)\left( \dfrac{1}{a}\right)+\left( \dfrac{1}{a}\right)^2}

\sf {(\because (x+y)^2=x^2+2xy+y^2)}

\sf {\left( a+\dfrac{1}{a}\right)^2=a^2+2+\dfrac{1}{a^2}}

\sf {\left( a+\dfrac{1}{a}\right)^2=\left(a^2+\dfrac{1}{a^2}\right)+2}

\sf {\left( a+\dfrac{1}{a}\right)^2=27+2}

\sf {\left(\because a^2+\dfrac{1}{a^2}=27\right)}

\sf {\left( a+\dfrac{1}{a}\right)^2=29}

Taking Square root both sides,

\sf {\sqrt{\left( a+\dfrac{1}{a}\right)^2}=\sqrt{29}}

\sf {a+\dfrac{1}{a}=\pm\sqrt{29}}

Now, calculating the required value,

\sf{\left(a+\dfrac{1}{a} \right)\left(a-\dfrac{1}{a} \right)}

\sf {(\pm\sqrt{29})(-5)}

\sf {\left(\because a+\dfrac{1}{a}=\pm\sqrt{29}\right)}

\sf {\left(\because a-\dfrac{1}{a}=-5\right)}

\sf {\mp\:5\sqrt{29}}

Answer :-

\underline{\boxed{\sf {a^2-\dfrac{1}{a^2}=\mp\:5\sqrt{29}}}}

Similar questions