Math, asked by farrahshaikh1974, 11 hours ago

if a+1/a =5 find a³+1/a³and a²+1/a²​

Answers

Answered by amansharma264
2

EXPLANATION.

⇒ (a + 1/a) = 5.

As we know that,

Formula of :

⇒ (x + y)² = x² + y² + 2xy.

⇒ (x + y)³ = x³ + 3x²y + 3xy² + y³.

Using this formula in the equation, we get.

Squaring on both sides of the equation, we get.

⇒ (a + 1/a)² = (5)².

⇒ (a)² + (1/a)² + 2(a)(1/a) = 25.

⇒ a² + 1/a² + 2 = 25.

⇒ a² + 1/a² = 25 - 2.

a² + 1/a² = 23.

Now, cubing on both sides of the equation, we get.

⇒ (a + 1/a)³ = (5)³.

⇒ (a)³ + 3(a)²(1/a) + 3(a)(1/a)² + (1/a)³ = (5)³.

⇒ a³ + 3a + 3/a + 1/a³ = 125.

⇒ a³ + 3(a + 1/a) + 1/a³ = 125.

Put the value of (a + 1/a = 5) in the equation, we get.

⇒ a³ + 3(5) + 1/a³ = 125.

⇒ a³ + 1/a³ + 15 = 125.

⇒ a³ + 1/a³ = 125 - 15.

a³ + 1/a³ = 110.

Answered by XxitzZBrainlyStarxX
5

Question:-

 \sf \large If \: a +  \frac{1}{a}  = 5. \: Find \: a {}^{3}  +  \frac{1}{a {}^{3} }  \: and \: \\  \sf \large a {}^{2}  +  \frac{1}{a {}^{2} } .

Given:-

 \sf \large \: a +  \frac{1}{a}  = 5.

To Find:-

 \sf \large \: a {}^{3}  +  \frac{1}{a {}^{3} }  \: and \:   \sf \large a {}^{2}  +  \frac{1}{a {}^{2} } .

Solution:-

We know that,

  • (a + b)³ = a³ + b³ + 3ab (a + b).

  • a³ + b³ = (a + b)³ 3ab (a + b).

 \sf \large \underline{1st  \: to  \: Find \: a {}^{3}   +  \frac{1}{a {}^{3} } .}

So,

 \sf \large a {}^{3}  +  \frac{1}{a {}^{3} }  = (a +  \frac{1}{a} ) {}^{3}  - 3 \times a \times  \frac{1}{a} (a +  \frac{1}{a} )

 \sf \large = (5) {}^{3} - 3 \times 5

  \sf \large= 125 - 15 = 110.

_______________________________________

 \sf \large \underline{2nd  \: to \:  Find  \:a {}^{2}  +  \frac{1}{a {}^{2} } . }

So,

 \sf \large \: a {}^{2}  +  \frac{1}{a {}^{2} } = (a +  \frac{1}{a} ) {}^{2}  - 2 \times a \times  \frac{1}{a}

 \sf \large = (5) {}^{2}  - 2

 \sf \large = 25 - 2 = 23.

Answer:-

 \sf \large \longmapsto \red{ a {}^{3}  +  \frac{1}{a {  }^{3} }  = 110.}

 \sf \large \longmapsto \red{a {}^{2}  +  \frac{1}{a {}^{2} }  = 23.}

Hope you have satisfied.

Similar questions