if a+1/a=5 find a7-109a4-114a
Answers
Answer:
this is the answer of your question.
Given. a + 1/a = 5
To find. a⁷ - 109a⁴ - 114a
Solution.
Here, a + 1/a = 5
or, a² - 5a + 1 = 0 .....(1)
Using quadratic formula, we get
a = [- (- 5) ± √{(- 5)² - 4 * 1 * 1}]/2
= [5 ± √(25 - 4)]/2
= (5 ± √21)/2
When a = (5 + √21)/2,
a⁷ - 109a⁴ - 114a
= ((5 + √21)/2)⁷ - 109 ((5 + √21)/2)⁴
- 114 ((5 + √21)/2)
= - 24
When a = (5 - √21)/2,
a⁷ - 109a⁴ - 114a
= ((5 - √21)/2)⁷ - 109 ((5 - √21)/2)⁴
- 114 ((5 - √21)/2)
= - 24
Answer.
a⁷ - 109a⁴ - 114a = - 24
Another approach. Division
[ refer to the attachment ]
∴ a⁷ - 109a⁴ - 114a
= (a² - 5a + 1) (a⁵ + 5a⁴ + 24a³ + 6a²
+ 6a + 24) - 24
= 0 * (a⁵ + 5a⁴ + 24a³ + 6a² + 6a + 24) - 24
[ by (1) ]
= - 24
Remark. There can be an assumption of the problem: (a + 1)/a = 5. Find a and put in a⁷ - 109a⁴ - 114a.