Math, asked by Koustav2003, 11 months ago

If (a-1/a)=√5 find the values of (i) (a+1/a) (ii) (a^3+1/a^3)​

Attachments:

Answers

Answered by LovelyG
3

Answer:

(i) 3

(ii) 18

Step-by-step explanation:

Given that ;

 \sf  \left(a -  \dfrac{1}{a} \right) =  \sqrt{5}

On squaring both sides ;

 \sf  \left(a -  \frac{1}{a} \right) {}^{2}  = ( \sqrt{5}) {}^{2} \\  \\ \implies \sf   {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2 = 5 \\  \\ \implies \sf  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 5 + 2 \\  \\ \implies \sf  {a}^{2}  +  \frac{1}{ {a}^{2} }  = 7

On adding 2 both sides ;

\implies \sf  {a}^{2}  +  \frac{1}{a {}^{2} }  + 2 = 7 +2  \\  \\ \implies \sf  {a}^{2}  +  \frac{1}{ {a}^{2}} + 2 \: . \:  a\:  .\:  \frac{1}{a}  = 9 \\  \\ \implies \sf  \left(a +  \frac{1}{a}  \right) {}^{2}  = (3) {}^{2}  \\  \\ \boxed{ \red{ \therefore \:  \bf a +  \frac{1}{a}  = 3}}

On cubing both sides ;

\implies \sf  \left( a +  \frac{1}{a} \right)^{3} = (3) {}^{3}  \\  \\ \implies \sf  {a}^{3} +  \frac{1}{ {a}^{3} }  + 3 \:  .\: a \: . \:  \frac{1}{a} (a +  \frac{1}{a} ) = 27 \\  \\ \implies \sf  {a}^{3} +  \frac{1}{ {a}^{3} }  + 3(3) = 27 \\  \\ \implies \sf  {a}^{3} +  \frac{1}{ {a}^{3} }  + 9 = 27 \\  \\ \implies \sf  {a}^{3} +  \frac{1}{ {a}^{3} }  = 27 - 9 \\  \\ \boxed{ \red{ \therefore \:  \bf  {a}^{3} +  \frac{1}{ {a}^{3} }  = 18}}

Answered by ferozemulani
2

Answer:

pls see the attachment

Attachments:
Similar questions