if a+1/a=5 then a²+1/a² = ?
answer me as fast as you can
Answers
Answered by
3
Required Answer:-
Given:
- a + 1/a = 5
To Find:
- The value of a² + 1/a²
Solution:
Given –
→ a + 1/a = 5
Squaring both sides, we get,
→ (a + 1/a)² = 25
Using identity (a + b)² = a² + 2ab + b², we get,
→ a² + 2 × a × 1/a + 1/a² = 25
→ a² + 1/a² + 2 = 25
→ a² + 1/a² = 25 - 2
→ a² + 1/a² = 23
∆ So, the value of a² + 1/a² is 23.
Answer:
- a² + 1/a² = 23
More Identities to know:
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
Answered by
1
Step-by-step explanation:
Required Answer:-✍️
Given:
a + 1/a = 5
To Find:
The value of a² + 1/a²
Solution:
Given –
→ a + 1/a = 5
Squaring both sides, we get,
→ (a + 1/a)² = 25
Using identity (a + b)² = a² + 2ab + b², we get,
→ a² + 2 × a × 1/a + 1/a² = 25
→ a² + 1/a² + 2 = 25
→ a² + 1/a² = 25 - 2
→ a² + 1/a² = 23
∆ So, the value of a² + 1/a² is 23.
Answer:
a² + 1/a² = 23
More Identities to know:
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
hope this helps you!!
thank you ⭐
Similar questions