Math, asked by swarnendudripto74, 2 months ago

if a+1/a=5 then a²+1/a² = ?

answer me as fast as you can​

Answers

Answered by anindyaadhikari13
3

Required Answer:-

Given:

  • a + 1/a = 5

To Find:

  • The value of a² + 1/a²

Solution:

Given –

→ a + 1/a = 5

Squaring both sides, we get,

→ (a + 1/a)² = 25

Using identity (a + b)² = a² + 2ab + b², we get,

→ a² + 2 × a × 1/a + 1/a² = 25

→ a² + 1/a² + 2 = 25

→ a² + 1/a² = 25 - 2

→ a² + 1/a² = 23

∆ So, the value of a² + 1/a² is 23.

Answer:

  • a² + 1/a² = 23

More Identities to know:

  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
Answered by niha123448
1

Step-by-step explanation:

Required Answer:-✍️

Given:

a + 1/a = 5

To Find:

The value of a² + 1/a²

Solution:

Given –

→ a + 1/a = 5

Squaring both sides, we get,

→ (a + 1/a)² = 25

Using identity (a + b)² = a² + 2ab + b², we get,

→ a² + 2 × a × 1/a + 1/a² = 25

→ a² + 1/a² + 2 = 25

→ a² + 1/a² = 25 - 2

→ a² + 1/a² = 23

∆ So, the value of a² + 1/a² is 23.

Answer:

a² + 1/a² = 23

More Identities to know:

  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)

hope this helps you!!

thank you ⭐

Similar questions