Math, asked by shrutibirua36, 8 months ago

if a-1/a =5, then find the value of a+1/a​

Answers

Answered by prince5132
6

GIVEN :-

  • a - 1/a = 5.

TO FIND :-

  • The value of a + 1/a

SOLUTION :-

 \\ : \implies \displaystyle \sf \: a -  \dfrac{1}{a}  = 5 \\  \\  \\

  \bullet \: \displaystyle \sf Squaring  \: Both \:  Sides. \\  \\  \\

 : \implies \displaystyle \sf \: \bigg( a -  \dfrac{1}{a} \bigg) ^{2}   = \bigg (5 \bigg ) ^{2} \\  \\  \\

\bullet \displaystyle \sf \: using \:  identity \to (a - b)^{2} = a^{2} + b^{2} - 2ab\\  \\  \\

: \implies \displaystyle \sf \: \bigg(a+  \frac{1}{a}  \bigg) ^{2}  - 2 \times a \times  \frac{1}{a}  = 25 \\  \\  \\

: \implies \displaystyle \sf \: \bigg(a+  \frac{1}{a}  \bigg) ^{2} - 2 = 25 \\  \\  \\

: \implies \displaystyle \sf \: \bigg(a+  \frac{1}{a}  \bigg) ^{2} = 25 + 2 \\  \\  \\

: \implies \displaystyle \sf \: \bigg(a+  \frac{1}{a}  \bigg) ^{2} = 27 \\  \\  \\

: \implies  \underline{ \boxed{\displaystyle \sf \: a+  \frac{1}{a}   =  \pm \: \sqrt{27}}} \\  \\

 \therefore \underline {\displaystyle \sf Required \ answer \ is \ \pm \sqrt{27}}

Answered by Anonymous
5

GIVEN :-

a - 1/a = 5.

TO FIND :-

The value of a + 1/a

SOLUTION :-

\begin{gathered}\\ : \implies \displaystyle \sf \: a - \dfrac{1}{a} = 5 \\ \\ \\\end{gathered} </p><p>

\begin{gathered}\bullet \: \displaystyle \sf Squaring \: Both \: Sides. \\ \\ \\\end{gathered} </p><p></p><p>

\begin{gathered}: \implies \displaystyle \sf \: \bigg( a - \dfrac{1}{a} \bigg) ^{2} = \bigg (5 \bigg ) ^{2} \\ \\ \\\end{gathered}

\begin{gathered}\bullet \displaystyle \sf \: using \: identity \to (a - b)^{2} = a^{2} + b^{2} - 2ab\\ \\ \\\end{gathered} </p><p>∙

\begin{gathered}: \implies \displaystyle \sf \: \bigg(a+ \frac{1}{a} \bigg) ^{2} - 2 \times a \times \frac{1}{a} = 25 \\ \\ \\\end{gathered}

\begin{gathered}: \implies \displaystyle \sf \: \bigg(a+ \frac{1}{a} \bigg) ^{2} - 2 = 25 \\ \\ \\\end{gathered}

\begin{gathered}: \implies \displaystyle \sf \: \bigg(a+ \frac{1}{a} \bigg) ^{2} = 25 + 2 \\ \\ \\\end{gathered}

\begin{gathered}: \implies \displaystyle \sf \: \bigg(a+ \frac{1}{a} \bigg) ^{2} = 27 \\ \\ \\\end{gathered}

\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \: a+ \frac{1}{a} = \pm \: \sqrt{27}}} \\ \\\end{gathered}

\therefore \underline {\displaystyle \sf Required \ answer \ is \ \pm \sqrt{27}}∴

Similar questions