Math, asked by Muhammadrafayet, 4 months ago

If a+1/a=5, then what is the value of 6a/(a^2+a+1) ?​

Answers

Answered by Anonymous
42

 \large \underline \bold{Given}:-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{a + \dfrac{1}{a} = 5}

 \large \underline \bold{To \: Find}:-

\: \: \: \: \: \: \: \sf{\dfrac{6a}{(a^{2} + a + 1)} = \: ?}

 \large \underline \bold{Solution}:-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{a + \dfrac{1}{a} = 5}

\sf{On \: multiplying \: the \: above \: eq. \: by \: a} -

\: \: \: \: \: \: \: \: \: \: \: \: \sf{a(a + \dfrac{1}{a}) = 5a}

\: \: \: \: \: \: \sf{a(a) + \cancel{a}(\dfrac{1}{\cancel{a}}) = 5a}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \small \bold{a^{2} + 1 = 5a ---(1)}

\sf{Now \: ,}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \small \bold{\dfrac{6a}{(a^{2} + a + 1)}}

\: \: \: \: \: \: \sf{=> \dfrac{6a}{(a^{2} + 1) + a}}

\: \: \: \: \: \: \: \: \: \: \: \: \sf{From \: eq.(1)} -

\: \: \: \: \: \: \sf{=> \dfrac{6a}{5a + a}}

\: \: \: \: \: \: \: \sf{=> \: \: \dfrac{6a}{6a}}

\: \: \: \: \: \: \: \: \:  \small \bold{=> \: \: \: 1}

 \large \underline \bold{Result}:-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \large\boxed{\sf\red{\dfrac{6a}{(a^{2} + a + 1)} = 1}}

Answered by nehashanbhag0729
3

Answer:

hey watch the above pic for ur answer of the question ...

Attachments:
Similar questions