If a + 1/a = 6, find a^3 + 1/a^3
Attachments:
Answers
Answered by
11
your answer:-
given:-
a+1/a=6
to find a3+1/a3
solution:-
using formula:-
(a+1/a)3=a3+1/a3 +3×a×1/a(a+1/a)
it's just like the formula of (a+b)3=a3+b3+3ab(a+b)
now putting values
(6)3=a3+1/a3+3(6)
216=a3+1/a3+18
216-18=a3+1/a3
198=a3+1/a3
thanks
@ananya☺
shimrah25:
Tysm❤️
Answered by
7
GOOD MORNING!!!
a + 1/a = 6 { Given }
a³ + 1/a³ = { a + 1/a }³ - 3 { a + 1/ a }
=>
a³ + 1/a³ = { 6 }³ - 3 { 6 }
=>
a³ + 1/a³ = 216 - 18
=>
a³ + 1/a³ = 198
______________________________
a³ + 1/a³ = ( a + 1/a ) ³ - 3 ( a + 1/a )
proof:-
R.H.S
a³ + 1/a³ + 3a²/a + 3a/a² - 3a - 3/a
=>
a³ + 1/a³ + 3a + 3/a - 3a - 3/a
=>
a³ + 1/a³ Hence, proved
a + 1/a = 6 { Given }
a³ + 1/a³ = { a + 1/a }³ - 3 { a + 1/ a }
=>
a³ + 1/a³ = { 6 }³ - 3 { 6 }
=>
a³ + 1/a³ = 216 - 18
=>
a³ + 1/a³ = 198
______________________________
a³ + 1/a³ = ( a + 1/a ) ³ - 3 ( a + 1/a )
proof:-
R.H.S
a³ + 1/a³ + 3a²/a + 3a/a² - 3a - 3/a
=>
a³ + 1/a³ + 3a + 3/a - 3a - 3/a
=>
a³ + 1/a³ Hence, proved
Similar questions
Math,
7 months ago
English,
7 months ago
English,
7 months ago
Social Sciences,
1 year ago
Chemistry,
1 year ago