Math, asked by akash260, 1 year ago

if a+1/a=6,then a4+1/a4 is equal to

Answers

Answered by mysticd
30

Answer:

 value \: of \: a^{4}+\frac{1}{a^{4}}=1154

Step-by-step explanation:

 Given \: a+\frac{1}{a}=6--(1)

Squaring on both sides,we get

\big(a+\frac{1}{a}\big)^{2}=6^{2}

\implies a^{2}+\frac{1}{a^{2}}+2\times a \times \frac{1}{a}=36

\implies a^{2}+\frac{1}{a^{2}}+2=36

\implies a^{2}+\frac{1}{a^{2}}=36-2

\implies a^{2}+\frac{1}{a^{2}}=34---(2)

On Squaring equation (2) , we get

\big(a^{2}+\frac{1}{a^{2}}\big)^{2}=(34)^{2}

\implies a^{4}+\frac{1}{a^{4}}+2\times a^{2} \times \frac{1}{a^{2}}=1156

\implies a^{4}+\frac{1}{a^{4}}+2=1156

\implies a^{4}+\frac{1}{a^{4}}=1156-2

\implies a^{4}+\frac{1}{a^{4}}=1154

Therefore,

 value \: of \: a^{4}+\frac{1}{a^{4}}=1154

•••♪

Similar questions