Math, asked by jerryjam2057, 10 months ago

If ( a - 1/a ) = 8/3 , find ( a raised to 6 - 1/a raised to 6 )

Answers

Answered by Darkrai14
138

★Given:-

\sf a - \dfrac{1}{a}= \dfrac{8}{3}

★To find:-

\sf a^6 - \dfrac{1}{a^6}

★Solution:-

First, we will find \sf a^2 + \dfrac{1}{a^2}

We will use the identity (a-b)² = a²+b² - 2ab to find it.

\sf \Bigg ( a - \dfrac{1}{a} \Bigg )^2 = (a)^2 + \Bigg ( \dfrac{1}{a} \Bigg )^2 - 2 \times a \times \dfrac{1}{a}

\sf \implies \Bigg ( \dfrac{8}{3} \Bigg )^2 = a^2 + \dfrac{1}{a^2} - 2

\sf \implies \dfrac{64}{9} = a^2 + \dfrac{1}{a^2} - 2

\sf \implies \dfrac{64}{9} + 2= a^2 + \dfrac{1}{a^2}

\sf \implies \dfrac{64+18}{9}= a^2 + \dfrac{1}{a^2}

\sf \implies \dfrac{82}{9}= a^2 + \dfrac{1}{a^2}

__________________________________

Now, we will find \sf a + \dfrac{1}{a}

We will use the identity (a+b)² = a² + b² + 2ab to find it.

\sf \implies \Bigg (a+\dfrac{1}{a} \Bigg )^2= (a)^2 + \Bigg ( \dfrac{1}{a} \Bigg )^2 + 2 \times a \times \dfrac{1}{a}

\sf \implies \Bigg (a+\dfrac{1}{a} \Bigg )^2= a^2 +\dfrac{1}{a^2} + 2

\sf \implies \Bigg (a+\dfrac{1}{a} \Bigg )^2= \dfrac{82}{9} + 2

\sf \implies \Bigg (a+\dfrac{1}{a} \Bigg )^2= \dfrac{82+18}{9}

\sf \implies \Bigg (a+\dfrac{1}{a} \Bigg )^2= \dfrac{100}{9}

\sf \implies a+\dfrac{1}{a}= \sqrt{\dfrac{100}{9}}

\sf \implies a+\dfrac{1}{a}= \dfrac{10}{3}

___________________________________________

Now, finally we will find \sf a^6 - \dfrac{1}{a^6}

Here, we will use the identity,

\boxed{ \sf a^6 - b^6 = (a-b)(a^2+b^2 +ab)(a+b)(a^2 + b^2 - ab)}

_________________________________

\small \sf \implies a^6 - \dfrac{1}{a^6} = \Bigg ( a - \dfrac{1}{a} \Bigg ) \Bigg ( (a)^2 + \Bigg ( \dfrac{1}{a} \Bigg )^2  + a \times \dfrac{1}{a} \Bigg ) \Bigg ( a + \dfrac{1}{a} \Bigg ) \Bigg ( (a)^2 + \Bigg ( \dfrac{1}{a} \Bigg )^2 -  a \times \dfrac{1}{a} \Bigg )

\small \sf \implies a^6 - \dfrac{1}{a^6} = \Bigg (\dfrac{8}{3} \Bigg ) \Bigg ( a^2 + \dfrac{1}{a^2} + 1 \Bigg ) \Bigg ( \dfrac{10}{3} \Bigg ) \Bigg ( a^2 +  \dfrac{1}{a^2}  - 1 \Bigg )

\small \sf \implies a^6 - \dfrac{1}{a^6} = \Bigg (\dfrac{8}{3} \Bigg ) \Bigg ( \dfrac{82}{9} + 1 \Bigg ) \Bigg ( \dfrac{10}{3} \Bigg ) \Bigg (  \dfrac{82}{9}  - 1 \Bigg )

\small \sf \implies a^6 - \dfrac{1}{a^6} = \Bigg (\dfrac{8}{3} \Bigg ) \Bigg ( \dfrac{82+9}{9} \Bigg ) \Bigg ( \dfrac{10}{3} \Bigg ) \Bigg (  \dfrac{82-9}{9}\Bigg )

\small \sf \implies a^6 - \dfrac{1}{a^6} = \Bigg (\dfrac{8}{3} \Bigg ) \Bigg ( \dfrac{91}{9} \Bigg ) \Bigg ( \dfrac{10}{3} \Bigg ) \Bigg (  \dfrac{73}{9}\Bigg )

\sf \implies a^6 - \dfrac{1}{a^6} = \dfrac{531440}{729}

Hope it helps

Similar questions