Math, asked by singhsamardeep28, 11 months ago

If A-1/A = 8 and A is non zero; find: A+ 1/A

Answers

Answered by TRISHNADEVI
3

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: Given, \:  \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \bold{A  -  \frac{1}{A}   = 8}\\  \\  \underline{ \mathfrak{ \:  \:To \:  \:  find \:  :-  \: }} \\  \\  \:  \:  \:  \:  \:   \:  \: \:  \:  \:  \:  \:  \:   \:\bold{A    +    \frac{1}{A}   = ?}

 \underline{ \mathfrak{ \: Now, \:  }}\\  \\   \:  \:  \: \:  \:  \:  \:  \:  \:   \: \bold{ \red{A -  \frac{1}{A}  = 8}} \\  \\  \\  \:  \:  \:  \:  \underline{ \text{ \: Squaring both sides, we get, \: }}

  \tt{ \:  \:  \:  \:  \:  \:  \:  \: (A -  \frac{1}{A} ) {}^{2}  = (8) {}^{2}  }\\  \\  \tt{ \implies \: A {}^{2}  - 2 \times A \times  \frac{1}{A} +  (\frac{1}{A} ) {}^{2}  = 64} \\  \\  \tt{ \implies \: A {}^{2}  +  \frac{1}{A {}^{2} }  - 2 = 64 }\\  \\   \tt{\implies \: A {}^{2}  -  \frac{1}{A {}^{2} }  = 64 + 2} \\  \\   \tt{\implies \:  \red{A {}^{2}  -  \frac{1}{A {}^{2} }  = 66}}

 \underline{ \text{ \: Adding  \red{2} in both sides, we get, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ A {}^{2}  -  \frac{1}{A {}^{2} }   + 2= 66 + 2 }\\  \\   \sf{\implies \: A {}^{2}  - ( \frac{1}{A} ) {}^{2} + 2 \times  A \times  \frac{1}{A}  = 68} \\  \\   \sf{\implies \: (A +  \frac{1}{A} ) {}^{2}  = 68 }\\  \\   \sf{\implies \: A +  \frac{1}{A}  =  \sqrt{68}}  \\  \\   \:  \:  \:\sf{ \red{\therefore \:  \: A +  \frac{1}{A}  =  \pm \: \sqrt{68}}}

Similar questions