Math, asked by pprerana289, 1 month ago

if a-1/a =8 and a is not equal to 0 find a^2-1/a^2.

Answers

Answered by TrustedAnswerer19
4

Answer:

Given,

 \sf \: a -  \frac{1}{a}  = 8 \\  \\  \sf \:   \odot \:  \: {a}^{2}  -  \frac{1}{ {a}^{2} }  =  \: to \: find \\  \\  \bf \: now \\  \\   \sf{(a +  \frac{1}{a} })^{2}  =  {(a -  \frac{1}{a} })^{2}  + 4 \times a \times  \frac{1}{a}  \\ \sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  {8}^{2}  + 4 \\ \sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 64 + 4 = 68 \\ \sf  \implies \: a +  \frac{1}{a} =  \sqrt{68}  \\  \\  \bf \: now \\  \\  \sf \:  {a}^{2}  -  \frac{1}{ {a}^{2} }  \\  \sf \:  = (a +  \frac{1}{a} )(a -  \frac{1}{a} ) \\  \sf \:  =  \sqrt{68}   \:  \: \times  \: 8 \\  \bf \:  = 8 \sqrt{68}  \\  \bf \:  = 8 \times  \sqrt{17 \times 4}  \\  \bf \:  = 8 \times 2 \times  \sqrt{17}  \\  \bf \:  = 16 \sqrt{17}

Additional Information :-

Important identities :-

\boxed{ \bf{ \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}

\boxed{ \bf{ \:  {(x  -  y)}^{2}  =  {x}^{2}  +  {y}^{2}   -  2xy}}

\boxed{ \bf{ \:  {(x  -  y)}^{3}  =  {x}^{3}   -  {y}^{3}   -  3xy(x - y)}}

\boxed{ \bf{ \:  {(x   +  y)}^{3}  =  {x}^{3}    +  {y}^{3}    +   3xy(x  +  y)}}

\boxed{ \bf{ \:  {x}^{2} -  {y}^{2}  = (x - y)(x + y)}}

\boxed{ \bf{ \:  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}}

\boxed{ \bf{ \:  {x}^{3}  -   {y}^{3} = (x  -  y)( {x}^{2}   +  xy +  {y}^{2} )}}

\boxed{ \bf{ \:  {x}^{4}  -   {y}^{4} = (x  -  y)(x + y)( {x}^{2} +  {y}^{2} )}}

Answered by santhipriya01
2

Answer:

Given,</p><p>\begin{gathered} \sf \: a - \frac{1}{a} = 8 \\ \\ \sf \: \odot \: \: {a}^{2} - \frac{1}{ {a}^{2} } = \: to \: find \\ \\ \bf \: now \\ \\ \sf{(a + \frac{1}{a} })^{2} = {(a - \frac{1}{a} })^{2} + 4 \times a \times \frac{1}{a} \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = {8}^{2} + 4 \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 64 + 4 = 68 \\ \sf \implies \: a + \frac{1}{a} = \sqrt{68} \\ \\ \bf \: now \\ \\ \sf \: {a}^{2} - \frac{1}{ {a}^{2} } \\ \sf \: = (a + \frac{1}{a} )(a - \frac{1}{a} ) \\ \sf \: = \sqrt{68} \: \: \times \: 8 \\ \bf \: = 8 \sqrt{68} \\ \bf \: = 8 \times \sqrt{17 \times 4} \\ \bf \: = 8 \times 2 \times \sqrt{17} \\ \bf \: = 16 \sqrt{17} \end{gathered}a−a1=8⊙a2−a21=tofindnow(a+a1)2=(a−a1)2+4×a×a1=82+4=64+4=68⟹a+a1=68nowa2−a21=(a+a1)(a−a1)=68×8=868=8×17×4=8×2×17=1617</p><p>Additional Information :-</p><p>Important identities :-</p><p>\boxed{ \bf{ \: {(x + y)}^{2} = {x}^{2} + {y}^{2} + 2xy}}(x+y)2=x2+y2+2xy</p><p>\boxed{ \bf{ \: {(x - y)}^{2} = {x}^{2} + {y}^{2} - 2xy}}(x−y)2=x2+y2−2xy</p><p>\boxed{ \bf{ \: {(x - y)}^{3} = {x}^{3} - {y}^{3} - 3xy(x - y)}}(x−y)3=x3−y3−3xy(x−y)</p><p>\boxed{ \bf{ \: {(x + y)}^{3} = {x}^{3} + {y}^{3} + 3xy(x + y)}}(x+y)3=x3+y3+3xy(x+y)</p><p>\boxed{ \bf{ \: {x}^{2} - {y}^{2} = (x - y)(x + y)}}x2−y2=(x−y)(x+y)</p><p>\boxed{ \bf{ \: {x}^{3} + {y}^{3} = (x + y)( {x}^{2} - xy + {y}^{2} )}}x3+y3=(x+y)(x2−xy+y2)</p><p>\boxed{ \bf{ \: {x}^{3} - {y}^{3} = (x - y)( {x}^{2} + xy + {y}^{2} )}}x3−y3=(x−y)(x2+xy+y2)</p><p>\boxed{ \bf{ \: {x}^{4} - {y}^{4} = (x - y)(x + y)( {x}^{2} + {y}^{2} )}}x4−y4=(x−y)(x+y)(x2+y2)</p><p>

Similar questions