Math, asked by singhdevanshu85, 8 months ago

If a-1/a = ✓8 , then the value of a²+1/a² is

Answers

Answered by Tomboyish44
41

ATQ;

\Longrightarrow \sf a - \dfrac{1}{a} = \sqrt{8}

Squaring on both sides we get:

\Longrightarrow \sf \Bigg( a - \dfrac{1}{a} \Bigg)^2 = \Big(\sqrt{8}\Big)^2

\Longrightarrow \sf \Bigg( a - \dfrac{1}{a} \Bigg)^2 = \sqrt{8} \times \sqrt{8}

Use the identity (x - y)² = x² + y² - 2xy

\Longrightarrow \sf a^2 + \Bigg(\dfrac{1}{a}\Bigg)^2 - \ 2\big(a\big)\Bigg( \dfrac{1}{a}  \Bigg) = 8

\Longrightarrow \sf a^2 + \dfrac{1}{a^2} \ - \ 2 = 8

\Longrightarrow \sf a^2 + \dfrac{1}{a^2} = 8 + 2

\Longrightarrow \sf a^2 + \dfrac{1}{a^2} = 10

Therefore the answer will be 10.

Answered by Darkrai14
174

ᏀᏆᐯᗴᑎ:-

\sf a - \dfrac{1}{a} = \sqrt{8}

Ꭲᝪ ᖴᏆᑎᗞ :-

\sf a^2 + \dfrac{1}{a^2}

ՏϴᏞႮͲᏆϴΝ:-

We know that,

(a-b)² = a² + b² - 2ab

Using this identity,

\sf \Bigg ( a - \dfrac{1}{a} \Bigg )^2= (a)^2 + \Bigg ( \dfrac{1}{a} \Bigg )^2 - 2 \times \cancel{a} \times \dfrac{1}{\cancel{a}}

\sf\implies  ( \sqrt{8} )^2= a^2 + \dfrac{1}{a^2} - 2

\sf \implies 8 = a^2 + \dfrac{1}{a^2} - 2

\sf  \implies 8 +2 = a^2 + \dfrac{1}{a^2}

\sf  \implies 10= a^2 + \dfrac{1}{a^2}

\boxed{ \bold{a^2 + \dfrac{1}{a^2}=10}}

↓Answer↓

10

Similar questions