Math, asked by AlbertEinstein123451, 1 year ago

if A^1/a=B^1/b=c^1/c and A^bc+B^ca+c^ab =729 then find B^1/b value

Answers

Answered by Deepsbhargav
1
hey friend!!!!!
_______


Let

A^1/A=B^1/B=C^1/C=k

Then

,A=k^A. B=k^B. C=k^C

Now,

A^(B+C)+B(A+C)+C(A+B)=729

K^ABC+K^ABC+K^ABC=729


3×K^ABC=729

K^ABC=243

K^ABC=3^5

Comparing both sides

K=B^1/B=3___________answer.

hope it will help you..

Deepsbhargav: unki bejatti kyu kr raha he bhai
AlbertEinstein123451: tu to bahut bhol raha hai
Deepsbhargav: haa
Deepsbhargav: to
Deepsbhargav: kitna easy solve kiya he
Deepsbhargav: Fir bhi puch rahe Ho yar
AlbertEinstein123451: I want to ask you
AlbertEinstein123451: A^(A+B)
AlbertEinstein123451: how you adding it
AlbertEinstein123451: to Bata de
Answered by amitnrw
0

B^{1/B} = 9^{1/ABC}

Step-by-step explanation:

Correction in Question

if A^{1/A} = B^{1/B} = C^{1/C}   ,  A^{BC} \times B^{AC} \times C^{AB} = 729

Let say

A^{1/A} = B^{1/B} = C^{1/C}  = k

Taking power ABC each side then

if A^{BC} = B^{AC} = C^{AB} =K^{ABC}

A^{BC} \times B^{AC} \times C^{AB} = 729\\k^{ABC} \times k^{ABC} \times k^{ABC} = 729\\( k^{ABC})^3 = 729\\( k^{ABC})^3 = 9^3\\ k^{ABC} = 9

k = 9^{1/ABC}\\A^{1/A} = 9^{1/ABC}

B^{1/B} = 9^{1/ABC}

Hence

B^{1/B} = 9^{1/ABC}

Learn more:

(xa/xb)a+b×(xb/xc)b+c×(xc/xa)

https://brainly.in/question/3630688

If A1/A = B1/B = C1/C, ABC + BAC + C AB = 729

https://brainly.in/question/12746107

Similar questions