Math, asked by sakshimittal769, 10 months ago

if a + 1/a = m and a - 1/a = n then find the relation b/w m and n​

Answers

Answered by mini0
3

 \huge \underline {\underline \mathtt \red{Answer }}

  {\underline{\underline \mathtt \orange {given :-}}}

 \mathtt{\implies \frac{a + 1}{a}  = m} ________________equation 1

   \mathtt{\implies\frac{a - 1}{a}  =   n} ________________equation 2

 \mathtt \pink {Adding \: equation \: 1 \: and \: 2}.

  \mathtt{\implies \frac{a + 1}{ a}  + \frac{a  - 1}{ a} = m + n}

  \mathtt{\implies \frac{a + 1 + a - 1}{a} =  m + n}

 \mathtt{ \implies \ \frac{2 a}{a}  = m + n}

    {\blue{\fbox{\boxed {\green{\underline{ \underline \mathtt\red{\implies  m + n = 2}}}}}}}

Answered by ishwarsinghdhaliwal
1

a + 1/a = m

Squaring on both sides, we get

(a + 1/a)² = m²

 {a}^{2}  +  \frac{1}{a ^{2} }  + 2 =  {m}^{2}  \\ {a}^{2}  +  \frac{1}{a ^{2} }  =  {m}^{2}  - 2   \:  \:  \:  \:  \:  \:  \:  \:  \: ....(1) \\ now \\ a -  \frac{1}{a}   = n \\ squaring \: on \: both \: sides \: we \: get\\ {a}^{2}  +  \frac{1}{a ^{2} }   -  2 =  {n}^{2}  \\ {a}^{2}  +  \frac{1}{a ^{2} }  =  {n}^{2}   + 2   \:  \:  \:  \:  \:  \:  \:  \:  \: ....(2)  \\

From (1) and (2) , we get

m²-2=n²+2

m²=n²+4

Similar questions