Math, asked by AnshNain, 9 months ago

If a+1/a = p, probe that a³+1/a³ = p (p²-3).​

Answers

Answered by Anonymous
59

\bigstar\rm\blue{GIVEN}\bigstar

  • If a+\dfrac{1}{a}=p......1

\bigstar\sf\blue{TO\:PROVE}\bigstar

  • a³+1/a³ = p (p²-3).

Now,

Cubing the both sides of eq 1

\implies\sf{(a+\dfrac{1}{a})^{3}=p^{3}}

\implies\sf{a+\dfrac{1}{a}^{3}+3\times{{\cancel{a}}}\times{\dfrac{1}{\cancel{a}}}(a+\frac{1}{a})}

\implies\sf{(a+\dfrac{1}{a}^{3})+3p=p^3}

\implies\sf{a+\dfrac{1}{a}^{3}=p^3-3p}

\implies\sf{a+\dfrac{1}{a}^{3}=p(p^2-3)}

Hence, Proved.

Similar questions