Math, asked by vyshnav8, 1 year ago

If a+1/a=root 3 then what is sum of a cube and its resiprocal

Answers

Answered by Swarup1998
11
The answer is given below :

Given,

a +  \frac{1}{a}  =  \sqrt{3}  \\  \\ now \: taking \:  cube \:  \: we \:  \: get \\  \\  ({a}^{3}  +  \frac{1}{ {a}^{3} } ) + 3 \times a \times  \frac{1}{a} \times  (a +  \frac{1}{a} ) =  { (\sqrt{3}) }^{3}  \\  \\ or \:  \:(  {a}^{3}  +  \frac{1}{ {a}^{3} } ) + 3 \sqrt{3}  = 3 \sqrt{3}  \\  \\ cancelling \:  \: 3 \sqrt{3}  \:  \: we \:  \: get \\  \\  {a}^{3}  +  \frac{1}{ {a}^{3} }  = 0

Thank you for your question.

rohitkumargupta: may be
Swarup1998: Oo... :smiling face:
vyshnav8: I coudnt understood
vyshnav8: Can you explain it
vyshnav8: It how Rohit kumar
fiercespartan: even I am getting the same answer!
Swarup1998: It is 0.
fiercespartan: yeah!.
vyshnav8: Will u give ur numbers
fiercespartan: nope
Answered by fiercespartan
8
Hey!

Here is your answer >>>

a + 1/a = root 3!.

We have to find a^3+(1/a)^3 =

Let us whole cube the equation on both sides!.

(a + 1/a)^3 = a^3 + (1/a)^3 +3a(1/a)(a+1/a)

(root3)^3 = a^3 + (1/a)^3 + 3(root3)

3 \sqrt{3}  =  {a}^{3}  +  { \frac{1}{a} }^{3}  + 3( \sqrt{3} )

a^3 + (1/a)^3 =
3 \sqrt{3}  - 3 \sqrt{3}

= 0

vyshnav8: Will u please give your watsapp number
fiercespartan: ???
fiercespartan: for what?
vyshnav8: Nothing dout clear cheyyan Oru friend venam atha
Similar questions