Math, asked by nancypriyancy, 6 hours ago

if (a-1/a)= root5, find the value of (a+ 1/a),(a^3+ 1/a^3)​

Answers

Answered by talpadadilip417
0

Step-by-step explanation:

 \tt \frac{a - 1}{a}  =  \sqrt{5}

 \tt{1 -  \frac{1}{a} =  \sqrt{5}  }

 \tt{ -  \frac{1}{a}  = ( \sqrt{5} - 1) }

 \tt{ - 1 = ( \sqrt{5}  - 1)a}

 \tt{a =   - \frac{1}{ \sqrt{5} - 1 } }

(1)

•Rationalize the denominator: \tt{\frac{1}{\sqrt{5}-1} \cdot \frac{\sqrt{5}+1}{\sqrt{5}+1}=\frac{\sqrt{5}+1}{{\sqrt{5}}^{2}-1}}

\tt{\frac{-\frac{\sqrt{5}+1}{{\sqrt{5}}^{2}-1}+1}{-\frac{\sqrt{5}+1}{{\sqrt{5}}^{2}-1}}}

•Use this rule: \tt{{\sqrt{x}}^{2}=x.}

\tt{\frac{-\frac{\sqrt{5}+1}{5-1}+1}{-\frac{\sqrt{5}+1}{5-1}}}

•Invert and multiply.

\tt{-(-\frac{\sqrt{5}+1}{4}+1)\times \frac{4}{\sqrt{5}+1}}

•Rationalize the denominator: \tt{(-\frac{\sqrt{5}+1}{4}+1)\times \frac{4}{\sqrt{5}+1} \cdot \frac{\sqrt{5}-1}{\sqrt{5}-1}=\frac{(-\frac{\sqrt{5}+1}{4}+1)\times 4(\sqrt{5}-1)}{{\sqrt{5}}^{2}-1}.}

\tt{-\frac{(-\frac{\sqrt{5}+1}{4}+1)\times 4(\sqrt{5}-1)}{{\sqrt{5}}^{2}-1}}

Regroup terms.

\tt{-\frac{4(-\frac{\sqrt{5}+1}{4}+1)(\sqrt{5}-1)}{{\sqrt{5}}^{2}-1}}

Use this rule: \tt{{\sqrt{x}}^{2}=x.}

\tt{-\frac{4(-\frac{\sqrt{5}+1}{4}+1)(\sqrt{5}-1)}{5-1}}

\tt{-(-\frac{\sqrt{5}+1}{4}+1)(\sqrt{5}-1)}

Similar questions