Math, asked by prince0163542812, 4 days ago

if [a+1/a] square =9 [a cube +1/a cube] equals to​

Answers

Answered by amansharma264
6

EXPLANATION.

⇒ (a + 1/a)² = 9.

As we know that,

We can write equation as,

⇒ (a + 1/a) = √9.

⇒ (a + 1/a) = 3.

Cubing on both sides of the equation, we get.

⇒ (a + 1/a)³ = (3)³.

As we know that,

Formula of :

⇒ (x + y)³ = x³ + 3x²y + 3xy² + y³.

Using this formula in the equation, we get.

⇒ (a)³ + 3(a)²(1/a) + 3(a)(1/a)² + (1/a)³ = (3)³.

⇒ a³ + 3a + 3/a + 1/a³ = 27.

⇒ a³ + 3(a + 1/a) + 1/a³ = 27.

Put the value of (a + 1/a) = 3 in the equation, we get.

⇒ a³ + 3(3) + 1/a³ = 27.

⇒ a³ + 1/a³ + 9 = 27.

⇒ a³ + 1/a³ = 27 - 9.

a³ + 1/a³ = 18.

Answered by kvalli8519
4

 \underline{ \bf SOLUTIO} :

\rm⇢ \: \:  {  [a +  \frac{1}{a} ]}^{2}  = 9

\rm⇢ \: \: a +  \frac{1}{a}  =  \sqrt{9}  = 3

from this by Cubing on Both the sides,

\rm⇢ \: \:  [a +  \frac{1}{a} ]^{3}  = 27

then, By using

(a + b)³ = a³ + + 3a²b + 3b²a , we get

\rm⇢ \: \:  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3 {(a)}^{ \cancel2} ( \frac{1}{ \cancel a} ) + 3( \cancel a)( \frac{1}{ {a}^{ \cancel2} } ) = 27

\rm⇢ \: \:  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3a +  \frac{3}{a}  = 27

\rm⇢ \: \:  3(a +  \frac{1}{a} ) +  {a}^{3}  +  \frac{1}{ {a}^{3} }

Substitute a + 1/a = 3, we get

\rm⇢ \: \: 3(3) +  {a}^{3}  +   \frac{1}{ {a}^{3} }  = 27

\rm⇢ \: \:  {a}^{3}  +  \frac{1}{ {a}^{3} }  = 27 - 9 = 18

FINAL ANSWER :

 \longmapsto \:  \:  \bf  {a}^{3}  +  \frac{1}{ {a}^{3} }  = 18

Similar questions