Math, asked by vipanpreetk, 2 days ago

If a–¹ , b–¹, c–¹ are in A.P (abc ≠ 0), then a-b/b-c is equal to​

Answers

Answered by xSoyaibImtiazAhmedx
0

 \bold{ {a}^{ - 1} ,\:  \:  {b}^{ - 1}  ,\:  \:  \:  {c}^{ - 1} } \:  \: are \: in \: AP.

 \bold{So,  \:  \: b^{-1} =   \frac{ {a}^{ - 1} +  {c}^{ - 1}  }{2} }

 \implies \:  { \bold{b \:  =  \frac{2}{ {a}^{ - 1}  +  {c}^{ - 1} } }}

\implies \:  { \bold{b \:  =  \frac{2}{  \frac{1}{a}   +   \frac{1}{c}  } }}

\implies \:  { \bold{b \:  =  \frac{2}{  \frac{c + a}{ac}  } }}

\implies \:   \boxed{ \bold{b \:  =  \frac{2ac}{ c + a} }}

Now ,

 \large \bold{ \frac{a - b}{b - c} }

 =   \large \bold{\frac{a -  \frac{2ac}{c + a} }{\frac{2ac}{c + a} - c} }

 =   \large \bold{\frac{ \frac{ac -  {a}^{2}  - 2ac}{c + a} }{\frac{2ac -  {c}^{2} - ca }{c + a} } }

=   \large \bold{{ \frac{ac -  {a}^{2}  - 2ac}{c + a} } \times {\frac{c + a }{2ac -  {c}^{2} - ca } }}

 =   \large  \boxed{\bold{ \frac{  - {a}^{2}  - ac}{ {c}^{2}  + ac} }}

Similar questions